Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains

Ivana Charousová, Juraj Medo, Soňa Javoreková


Broad spectrum antimicrobial agents are urgently needed to fight frequently occurring multidrug-resistant pathogens. Myxobacteria have been regarded as “microbe factories” for active secondary metabolites, and therefore, this study was performed to isolate two bacteriolytic genera of myxobacteria, Myxococcus sp. and Corallococcus sp., from 10 soil/sand samples using two conventional methods followed by purification with the aim of determining the antimicrobial activity of methanol extracts against 11 test microorganisms (four Gram-positive, four Gram-negative, two yeasts and one fungus). Out of thirty-nine directly observed strains, 23 were purified and analyzed for antimicrobial activities. Based on the broth microdilution method, a total of 19 crude extracts showed antimicrobial activity. The range of inhibited wells was more important in the case of anti-Gram-positive-bacterial activity in comparison with the anti-Gram-negative-bacterial and antifungal activity. In light of the established degree and range of antimicrobial activity, two of the most active isolates (BNEM1 and SFEC2) were selected for further characterization. Morphological parameters and a sequence similarity search by BLAST revealed that they showed 99% sequence similarity to Myxococcus xanthus − BNEM1 (accession no. KX669224) and Corallococcus coralloides – SFEC2 (accession no. KX669225). As these isolates had antimicrobial activity, they could be considered for use in the development of antibiotics for pharmaceutical use.

Received: October 11, 2016; Revised: November 14, 2016; Accepted: November 18, 2016; Published online: December 14, 2016

How to cite: Charousová I, Medo J, Javoreková S. Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains. Arch Biol Sci. 2017;69(3):561-8.


Myxococcus sp., Corallococcus sp.; antimicrobial activity; multidrug-resistant organisms

Full Text:



Kaiser D. Signalling in myxobacteria. Annu Rev Microbiol. 2004;58:75-98.

Reichenbach H. Myxobacteria producers of novel bioactive substances. J Ind Microbiol Biotechnol. 2001;27:1057-98.

Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev. 2009;33:942-57.

Weissman, K.J., Müller, R.A. Brief tour of myxobacterial secondary metabolism. Bioorg Med Chem. 2009;17:2121-36.

Bon RS, Waldmann H. Bioactivity-guided navigation of chemical space. Acc Chem Res. 2010;43:1103-14.

Bode HB, Müller R. Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol. 2006;33:577-88.

Silakowski B, Kunze B, Müller R. Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene. 2001;275:233-40.

Kaur G, Hollingshead H. Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem J. 2006;396:235-42.

Wenzel SC, Müller R. Myxobacteria – ‘microbial factories’ for the production of bioactive secondary metabolites. Mol Biosyst. 2009;5:567-74.

Shimkets L, Dworkin M, Reichenbach H. The myxobacteria. In: Dwotkin M, Falkow S, Rosenberg E, editors. The prokaryotes. New York: Springer; 2006. p. 31-115.

Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson LJ, D´haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld Ch, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature. 2009;462:1056-60.

Ivanova N, Daum Ch, Lang E, Birte Abt, Kopitz M, Saunders E, Lapidus A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brettin T, Rohde M, Goker M, Bristow J, Markowitz V, Eisen JA, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Haliangium ochraceum type strain (SMP2T). Stand Genomic Sci. 2010;2:96-106.

Reichenbach H, Dworkin M. The myxobacteria. In: Balows A, Truper HG, Dworkin M, Harder KH, editors. The prokaryotes. New York: Springer; 1992. p. 3417-87.

Schlegel HG. Allgemeine Mikrobiologie. 7 th ed. Stuttgart: Thieme Verlag; 1992. 634 p.

Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M. Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiol open. 2015;5:268-78.

Reichenbach H. Genus II. Corallococcus gen. nov. (Chondrococcus Jahn 1924, 85). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey's Manual of Systematic Bacteriology. New York: Springer; 2005. p. 1079-82.

Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163-75.

Cazin J, Wiemer DF, Howard JJ. Isolation. Growth characteristics, and long term storage of fungi cultivated by attine ants. App Environ Microbiol. 1989;55:1346-50.

Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. UK: Wiley; 1981. p. 115-76.

Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol. 1981;17:368-76.

Guindon S, Gascuel AA. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696-704.

Declercq AM, Haesebrouck F, den Broeck WV, Bossier P, Decostere A. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res. 2013;44:27.

Gaspari F, Paitan Y, Mainini M, Losi D, Ron EZ, Marinelli F. Myxobacteria isolated in Israel as potential source of new anti-infectives. J Appl Microbiol. 2005;98:429-39.

Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403-27.

Foster HA, Yasouri FN, Daoud NN. Antibiotic activity of soil myxobacteria and its ecological implications. FEMS Microbiol Ecol. 1992;10:27-32.

Norén B, Raper K. Antibiotic activity of myxobacteria in relation to their bacteriolytic capacity. J Bacteriol. 1962;84:157-62.

Gebreyohannes G, Moges F, Sahile S, Raja N. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac J Trop Biomed. 2013;3:426-35.

Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep. 2010;27:1276-95.

Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact. 2009;8:63.

Zhang X, Yao Q, Cai Z, Xie X, Zhu H. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PLoS One. 2013;8:e70466.

Lang E, Stackebrandt E. Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int J Syst Evol Microbiol. 2009;59:2122-8.

Sood S, Awal RP, Wink J, Mohr KI, Rohde M, Stadler M, Kampfer P, Glaeser SP, Schumann P, Garcia R, Müller R. Aggregicoccus edonensis gen. nov., sp. nov., an unusually aggregating myxobacterium isolated from a soil sample. Int J Syst Evol Microbiol. 2015;65:745-53.

Cortina NS, Krug D, Plaza A, Revermann O, Müller R. Myxoprincomide: A natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed. 2011;51:811-6.

Gerth K, Jansen R, Reifenstahl G, Hӧfle G, Irschik H, Kunze B, Reichenbach H, Thierbach G. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) I. production, physico-chemical and biological properties, and mechanism of action. J Antibiot. 1983;36:1150-6.

Trowitzsch-Kienast W, Gerth K, Reichenbach H, Hӧfle G. Myxochromid A: Ein hochungesättigtes Lipopeptidlacton aus Myxococcus virescens. Liebigs Ann Chem. 1993;1993:1233-7.

Gerth K, Irschik H, Reichenbach H, Trowitzsch W. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J Antibiot. 1982;35:1454-9.

Kunze B, Bedorf N, Kohl W, Hӧfle G, Reichenbach H. Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J Antibiot. 1989;42:14-7.

Reichenbach H, Hӧfle G. Myxobacteria as producers of secondary metabolites. In: Grabley S, Thiericke R, editors. Drug discovery from nature. Berlin: Springer; 1999. p. 149-79.

Irschik H, Trowitzsch-Kienast W, Gerth K, Hӧfle G, Reichenbach H. Saframycin Mx1, a new natural saframycin isolated from a myxobacterium. J Antibiot. 1988;41:993-8.

Kunze B, Reichenbach H, Augustiniak H, Höfle G. Isolation and identification of althiomycin from Cystobacter fuscus (Myxobacterales). J Antibiot. 1982;35:635-6

Schmitz A, Kehraus S, Schäberle TF, Neu E, Almeida C, Roth M, Kӧnig GM. Corallorazines from the myxobacterium Corallococcus coralloides. J Nat Prod. 2014;77:159-63.

Jansen R, Hӧfle G, Irschik H, Reichenbach H. Antibiotika aus Gleitenden Bakterien, XXIV. Corallopyronin A, B und C − drei neue antibiotika aus Corallococcus coralloides Cc c127 (Myxobacterales). Liebigs Ann. Chem. 1985;4:822-36.


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.