DNA methylation alteration is a major consequence of genome doubling in autotetraploid Brassica rapa

Yanhao Xu, Wenying Zhang, Gonghai Chen, Jianbo Wang


Polyploids are typically classified as autopolyploids or allopolyploids based on the origin of their chromosome sets. Autopolyploidy is much more common than traditionally believed. Allopolyploidization, accompanied by genomic and transcriptomic changes, has been well investigated. In this study, genetic, DNA methylation and gene expression changes in autotetraploid Brassica rapa were investigated. No genetic alteration was detected using an amplified fragment length polymorphism (AFLP) approach. Using a cDNA-AFLP approach, approximately 0.58% of fragments showed changes in gene expression in autotetraploid B. rapa. The methylation-sensitive amplification polymorphism (MSAP) analysis showed that approximately 1.7% of the fragments underwent DNA methylation changes upon genome doubling, with hypermethylation and demethylation changes equally affected. Fragments displaying changes in gene expression and methylation status were isolated and then sequenced and characterized, respectively. This study showed that variation in cytosine methylation is a major consequence of genome doubling in autotetraploid Brassica rapa.


Received: January 31, 2017; Revised: April 6, 2017; Accepted: May 4, 2017; Published online: May 23, 2017

How to cite this article: Xu Y, Zhang W, Chen G, Wang J. DNA methylation alteration is a major consequence of genome doubling in autotetraploid Brassica rapa. Arch Biol Sci. 2017;69(4):689-97.


autotetraploid; Brassica rapa; DNA methylation; gene expression; genome doubling

Full Text:



Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon. 2007;56(1):13-30.

Soltis DE, Soltis PS. Polyploidy. recurrent formation and genome evolution. Trends Ecol Evol. 1999;14(9):348-52.

Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phyto. 2010;186(1):5-17.

Madlung A, Wendel J. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res. 2013;140(2-4):270-85.

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836-46.

Xu Y, Zhao Q, Mei S, Wang J. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa. Plant Biol. 2012;14(5):734-44.

Raina S, Parida A, Koul K, Salimath S, Bisht M, Raja V, Khoshoo T. Associated chromosomal DNA changes in polyploids. Genome. 1994;37(4):560-4.

Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species. Genome. 2009;52(3):275-85.

Dar TH, Raina SN, Goel S. Molecular analysis of genomic changes in synthetic autotetraploid Phlox drummondii Hook. Biol J Linn Soc. 2013;110(3):591-605.

Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC. Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci. 2007;172(5):970-7.

Weiss H, Maluszynska J: Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas. 2001;133(3):255-61.

Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FC, Jones GH. Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics. 2003;165(3):1533-40.

Ozkan H, Tuna M, Galbraith D: No DNA loss in autotetraploids of Arabidopsis thaliana. Plant Breed. 2006;125(3):288-91.

Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A. Stress‐induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108-18.

Ochogavía AC, Cervigni G, Selva JP, Echenique VC, Pessino SC. Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula. Plant Mol Biol. 2009;70(1-2):17-29.

Aversano R, Caruso I, Aronne G, De Micco V, Scognamiglio N, Carputo D. Stochastic changes affect Solanum wild species following autopolyploidization. J Exp Bot. 2013;64(2):625-35.

Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. The Plant J. 2012;71(4):539-49.

Wang C-G, Hui L, Xue Z-Y, Chen C-B, Gu Y, Sun D-L, Song W-Q. Marker-based analysis of genome structure and DNA methylation in a watermelon (Citrullus lanatus) ploidy series. Bot Stu. 2009;50:389-402.

Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge R, Comai L. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006;172(1):507-17.

Riddle NC, Jiang H, An L, Doerge R, Birchler JA: Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet. 2010,120(2):341-53.

Lu B, Pan X, Zhang L, Huang B, Sun L, Li B, Yi B, Zheng S, Yu X, Ding R. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana Affymetrix genechips. Plant Mol Biol Rep. 2006;24(2):197-204.

Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC: A comprehensive analysis of gene expression alterations in a newly synthesized Paspalum notatum autotetraploid. Plant Sci. 2005;169(1):211-20.

Cervigni GD, Paniego N, Pessino S, Selva JP, Díaz M, Spangenberg G, Echenique V: Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. Plant Mol Biol. 2008;67(1-2):11-23.

Zhang X, Deng M, Fan G: Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid. Int J Mol Sci. 2014;15(3):5079-93.

Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics. 2007;176(4):2055-67.

Church SA, Spaulding EJ. Gene expression in a wild autopolyploid sunflower series. J Hered. 2009;100(4):491-5.

Wu J, Shahid MQ, Guo H, Yin W, Chen Z, Wang L, Liu X, Lu Y. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Repro. 2014;27(4):181-96.

Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 2007;19(11):3403-17.

Xu Y, Zhong L, Wu X, Fang X, Wang J: Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta. 2009;229(3):471-83.

Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chevre A. Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol. 2011;191(3):884-94.

Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chèvre AM, Thiellement H. Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics. 2005;5(8):2131-9.

Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J. 1996;9(5):745-53.

Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet. 1999;261(3):439-46.

Portis E, Acquadro A, Comino C, Lanteri S: Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 2004;166(1):169-78.

Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Geno. 2002;268(4):543-52.

Wang Y, Rong H, Xie T, Jiang J, Wu J, Wang Y. Comparison of DNA methylation in the developing seeds of yellow- and black-seeded Brassica napus through MSAP analysis. Euphytica 2016;209(1):157-69.

Gautam M, Dang Y, Ge X, Shao Y, Li Z: Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from intergeneric allopolyploid and additions with Orychophragmus. Front Plant Sci. 2016;7:e65078.

Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, Mccosh RB, Chen H, Schork NJ. Patterns of population epigenomic diversity. Nature. 2013;495(7440):193.


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.