Bensulfuron-methyl resistant Sagittaria trifolia L.: multiple resistance, cross-resistance and molecular basis of resistance to acetolactate synthase-inhibiting herbicides

Danni Fu, Jamil Shafi, Bochui Zhao, Xiuwei Li, He Zhu, Songhong Wei, Mingshan Ji

Abstract


Acetolactate synthase (ALS)-inhibiting herbicides play an important role in controlling broad-leaved weeds. Populations of Sagittaria trifolia L. showed resistance to ALS-inhibiting sulfonylurea herbicides (e.g. bensulfuron-methyl) in paddy fields in the northeast of China. In our study, whole-plant bioassays were performed on eight suspected resistant S. trifolia populations that showed high levels of resistance to bensulfuron-methyl, with resistance indices from 31.06 to 120.35. The results of ALS-activity assays were consistent with the observed whole-plant dose-response data. This confirmed that resistant populations displayed significantly higher ALS activity than the sensitive population due to prevention of normal enzyme-herbicide interaction. The mutations Pro-197-Ser, Pro-197-His, Pro-197-Thr and Pro-197-Leu were identified in the ALS gene of resistant populations. Pro-197-His and Pro-197-Thr mutations conferring resistance to bensulfuron-methyl are reported for the first time in S. trifolia. All resistant populations were resistant to sulfonylurea (SU) herbicides, but not to imidazolinone (IMI) herbicides. HLJ-5 and JL-3 populations were resistant to bispyribac-sodium of the pyrimidinyl-thiobenozoate (PTB) class of ALS herbicides, JL-2 to penoxsulam of triazolopyrimidine (TP) class and JL-1 to pyribenzoxim, also of PTB class. The eight S. trifolia populations were susceptible to other herbicide modes of action tested.

https://doi.org/10.2298/ABS170210010F

Received: February 10, 2017; Revised: March 6, 2017; Accepted: March 9, 2017; Published online: March 20, 2017

How to cite this article: Fu D, Shafi J, Zhao B, Li X, Zhu H, Wei S, Ji M. Bensulfuron-methyl resistant Sagittaria trifolia L.: Multiple resistance, cross-resistance and molecular basis of resistance to acetolactate synthase-inhibiting herbicides. Arch Biol Sci. 2017;69(4):649-58.  


Keywords


acetolactate synthase; genetic analysis; herbicide resistance; target-site mutation; Sagittaria trifolia L.

Full Text:

PDF

References


Massa D, Krenz B, Gerhards R. Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations. Weed Res. 2011;51(3):294-303.

Durner J, Gailus V, Boger P. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 1991;95(4):1144-9.

Chaleff RS, Mauvais CJ. Acetolactate synthase is the site of action of two SU herbicides in higher plants. Sci. 1984;224:1443-6.

Shaner DL, Anderson PC, Studham MA. Imidazolinones potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 1984;76(2):545-6.

Gerwick BC, Subramanian MV, Loney-Gallant VI, Chandler DP. Mechanism of action of the 1, 2, 4-triazolo [1, 5-a] pyrimidines. Pest Manag Sci. 1990;29(3):357-64.

Stidham MA. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 1991;39(3):428-34.

Heap IM. The International Survey of Herbicide Resistant Weeds [Internet]. USA: Western Society of Weed Science. 1993- [cited 2017 March 15]. Available from: http://www.weedscience.org/ .

Mallory-Smith CA, Thill DC, Dial MJ. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 1990;4(1):163-8.

Liu WT, Bi YL, Li LX, Yuan GH, Du L, Wang JX. Target-site basis for resistance to acetolactate synthase inhibitor in water chickweed (Myosoton aquaticum L.). Pestic Biochem Physiol. 2013;107(1):50-4.

Lu ZZ, Zhang CX, Fu JF, Li MH, Li GJ. Molecular basis of resistance to bensulfuron-methyl in Monochoria korsakowii. Sci Agric Sin. 2009;42(10):3516-21.

Han XJ, Dong Y, Sun XN, Li XF, Zheng MQ. Molecular basis of resistance to tribenuron-methyl in Descurainia sophia (L.) populations from China. Pestic Biochem Physiol. 2012;104(1):77-81.

Tranel PJ, Wright TR. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 2002;50(6):700-12.

Tranel PJ, Wright TR, and Heap IM. The International Survey of Herbicide Resistant Weeds [Internet]. USA: Western Society of Weed Science. 1993- . Mutations in herbicide-resistant weeds to ALS inhibitors; [cited 2017 March 15]; [about 2 screens]. Available from: http://www.weedscience.com/Mutations/MutationDisplayAll.aspx .

Beckie HJ, Tardif FJ. Herbicide cross resistance in weeds. Crop Prot. 2012;35:15-28.

Powles SB, Yu Q. Evolution in action: plants resistant to herbicides. Ann Rev Plant Biol. 2010;61:317-47.

Yu Q, Han H, Li M, Purba E, Walsh MJ, Powles SB. Resistance evaluation for herbicide resistance-endowing acetoacetate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Res. 2011;52(2):178-86.

Sibony M, Michel A, Haas HU, Rubin B, Hurle K. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res. 2001;41(6):509-22.

Kuk YI, Kwon OD, Jung HI, Burgos NR, Guh JO. Cross-resistance pattern and alternative herbicides for Rotala indica resistant to imazosulfuron in Korea. Pestic Biochem Physiol. 2002;74(3):129-38.

Yu Q, Han HP, Powles SB. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci. 2008;64(12):1229-36.

Zheng D, Kruger GR, Singh S, Davis VM, Tranel PJ, Weller SC, Johnson WG. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Manag Sci. 2011;67(12):1486-92.

Fischer AJ, Bayer DE, Carriere MD, Ateh CM, Yim KO. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon. Pestic Biochem Physiol. 2000;68(3):156-65.

Wei SH, Li PS, Ji MS, Dong Q, Wang HN. Target-site resistance to bensulfuron-methyl in Sagittaria trifolia L. populations. Pestic Biochem Physiol. 2015;124:81-5.

Iwakami S, Watanabe H, Miura T, Matsumoto H, Uchino A. Occurrence of sulfonylurea resistance in Sagittaria trifolia, a basal monocot species, based on target-site and non-target-site resistance. Weed Biol Manag. 2014;14(1):43-9.

Yu Q, Han HP, Vila-Aiub MM, Powles SB. Herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J Exp Bot. 2010;61(14):3925-34.

Bradford MM. A rapid and sensitive method for quantization of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54.

Tan MK, Preston C, Wang GX. Molecular basis of multiple resistance to ACCase-inhibiting and ALS-inhibiting herbicides in Lolium rigidum. Weed Res. 2007;47(6):534-41.

Seefeld SS, Jensen JE, Fuerst EP. Log-logistic analysis of herbicides dose response relationships. Weed Technol. 1995;9(2):218-27.

Boutsalis P, Karotam J, Powles SB. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortill. Pest Manag Sci. 1999;55(5):507-16.

Yu Q, Nelson JK, Zheng MQ, Jackson M, Powles SB. Molecular characterization of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci. 2007;63(9):918-27.

Deng W, Liu MJ, Yang Q, Mei Y, Li XF, Zheng MQ. Tribenuron-methyl resistance and mutation diversity of Pro197 in flixweed (Descurainia Sophia L.) accessions from China. Pestic Biochem Physiol. 2015;117:68-74.

Intanon S, Perez-Jones A, Hulting AG, Mallory-Smith CA. Multiple Pro197 ALS substitutions endow resistance to ALS inhibitors within and among Mayweed chamomile populations. Weed Sci. 2011;59(3):431-7.

Jeffers GM, O’Donovan JT, Hall LM. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol. 1996;10(4):847-50.

Veldhuis LJ, Hall LM, O’Donovan JT, Dyer W, Hall JC. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J Agric Food Chem. 2000;48(7):2986-90.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 ARCHIVES OF BIOLOGICAL SCIENCES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.