Environmental drivers of raccoon (Procyon lotor L.) occurrences in Austria – established versus newly invaded regions

Tanja Duscher, Samuel I. Zeveloff, Frank-Uwe Michler, Ursula Nopp-Mayr

Abstract


As we are faced with the imminent spread of the raccoon (Procyon lotor L.), a successful and highly adaptable invader in Europe, it is necessary to identify the drivers of its distribution and focal areas of its future management. Being an omnivorous species, raccoons can exert considerable influence on prey species of various taxa. Species distribution models for this invasive species can be useful tools for its management. Using a presence-only model (MaxEnt) based on environmental variables selected by raccoon experts, the presence of raccoons in Austria was predicted. Core areas of raccoon colonization are mainly located in and around cities and river valleys. Identified ecological drivers of raccoon distribution comprise climate and land-cover variables, with temperature parameters (e.g. the number of hot days, mean January temperature), the proportion of coniferous forests, settlements and elevation mainly influencing the model output. The importance of habitat parameters changes with the stage of invasion. In Austria’s established regions, the probability of raccoon presence was best predicted by variables chosen by an expert of the raccoon’s native range, while the predictors chosen by an expert in its introduced range better reflected the situation in recently invaded regions. The significance of climate and land cover in understanding the probability of raccoon presence was shown.

https://doi.org/10.2298/ABS170512024D

Received: May 12, 2017; Revised: June 18, 2017; Accepted: July 3, 2017; Published online: July 25, 2017

How to cite this article: Duscher T, Zeveloff SI, Michler FU, Nopp-Mayr U. Environmental drivers of raccoon (Procyon lotor L.) occurrences in Austria - established versus newly invaded regions. Arch Biol Sci. 2018;70(1):41-53.


Keywords


Procyon lotor L.; species distribution modeling; MaxEnt; biological invasion; invasion stage

Full Text:

PDF

References


Zeveloff SI. Raccoons: A Natural History. Washington, DC: Smithsonian Institution Press; 2002. 240 p.

Ikeda T, Asano M, Matoba Y, Abe G. Present status of invasive alien raccoon and its impact in Japan. Glob Environ Res. 2004;8(2):125-31.

Biedrzycka A, Zalewski A, Bartoszewicz M, Okarma H, Jędrzejewska E. The genetic structure of raccoon introduced in Central Europe reflects multiple invasion pathways. Biol Invasions. 2014;16(8):1611-25.

Zeveloff SI. On the mortality and management of a ubiquitous musteloid: the common raccoon. In: Macdonald D, Harrington L, Newman, editors. The Biology and Conservation of Musteloids. England: Oxford University Press; 2017.

Lutz W. Die Verbreitung des Waschbären (Procyon lotor, Linné 1758) im mitteleuropäischen Raum. Z Jagdwiss. 1984;30(4):218-28.

Stubbe M. Der Waschbär Procyon lotor (L., 1758) in der DDR. Hercynia - Ökol Umw Mitteleur. 1975;12(1):80-91.

Hohmann U, Bartussek I, Böer B. Der Waschbär. Reutlingen, Germany: Oertel & Spörer; 2011. 200 p.

Beltrán-Beck B, García FJ, Gortázar C. Raccoons in Europe: disease hazards due to the establishment of an invasive species. Eur J Wildl Res. 2012;58(1):5-15.

Aubrecht G. Waschbär (Procyon lotor) und Marderhund (Nyctereutes procyonoides)-zwei faunenfremde Tierarten erobern Österreich. Stapfia. 1995;37:225-36.

Sackl P. Waschbär Procyon lotor (Linnaeus, 1758). In: Spitzenberger F, editor. Die Säugetierfauna Österreichs. Grüne Reihe. Vol. 13. Vienna: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft; 2001. p. 595-602.

Zalewski A, Michalska-Parda A, Bartoszewicz M, Kozakiewicz M, Brzeziński M. Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol Conserv. 2010;143(6):1355-63.

Fischer ML, Hochkirch A, Heddergott M, Schulze C, Anheyer-Behmenburg HE, Lang J, Michler F-U, Hohmann U, Ansorge H, Hoffmann L, Klein R, Frantz AC. Historical invasion records can be misleading: genetic evidence for multiple introductions of invasive raccoons (Procyon lotor) in Germany. PloS One. 2015;10(5):e0125441.

Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O´Neil P, Parker IM, Thompson JN, Weller SG. The population biology of invasive species. Annu Rev Ecol Syst. 2001;32:305-332.

Park SY, Glaser C, Murray WJ, Kazacos KR, Rowley HA, Fredrick DR, Bass N. Raccoon Roundworm (Baylisascaris procyonis) Encephalitis: Case Report and Field Investigation. Pediatrics. 2000;106(4):e56.

Popiołek M, Szczęsna-Staśkiewicz J, Bartoszewicz M, Okarma H, Smalec B, Zalewski A. Helminth Parasites of an Introduced Invasive Carnivore Species, the Raccoon (Procyon lotor L.), From the Warta Mouth National Park (Poland). J Parasitol. 2010;97(2):357-60.

Chow TE, Gaines KF, Hodgson ME, Wilson MD. Habitat and exposure modelling for ecological risk assessment: A case study for the raccoon on the Savannah River Site. Ecol Model. 2005;189(1-2):151-67.

Gey AB. Synopsis der Parasitenfauna des Waschbären (Procyon lotor) unter Berücksichtigung von Befunden aus Hessen. [dissertation]. [Gießen]: Justus Liebig-Universität; 1998. 134 p.

Schwarz S, Sutor A, Mattis R, Conraths FJ. The raccoon roundworm (Baylisascaris procyonis) - No zoonotic risk for Brandenburg? Tierarztl Wochenschr. 2015;128(1-2):34-8.

Duscher T, Hodžić A, Glawischnig W, Duscher GG. The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)—their role and impact of maintaining and transmitting zoonotic diseases in Austria, Central Europe. Parasitol Res. 2017;116(4):1411-6.

Michler F-UF, Michler BA. Ökologische, ökonomische und epidemiologische Bedeutung des Waschbären (Procyon lotor) in Deutschland - eine aktuelle Übersicht. Beitr Jagd Wildforsch. 2012;37:389-97.

Nehring S, Rabitsch W, Kowarik I, Essl F, editors. Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Wirbeltiere: unter Verwendung von Ergebnissen aus den F+E-Vorhaben FKZ 806 82 330, FKZ 3510 86 0500 und FKZ 3511 86 0300. Bonn- Bad Godesberg: Bundesamt für Naturschutz; 2015. 222 p.

Puskas RB, Fischer JW, Swope CB, Dunbar MR, McLean RG, Root JJ. Raccoon (Procyon lotor) movements and dispersal associated with ridges and valleys of Pennsylvania: implications for rabies Management. Vector-Borne Zoonotic Dis. 2010;10(10):1043-48.

Beasley JC, Devault TL, Retamosa MI, Rhodes OE. A Hierarchical Analysis of Habitat Selection by Raccoons in Northern Indiana. J Wildl Manag. 2007;71(4):1125-33.

Bartoszewicz M, Okarma H, Zalewski A, Szczęsna J. Ecology of the Raccoon (Procyon lotor) from Western Poland. Ann Zool Fenn. 2008;45(4):291-8.

Heske EJ, Ahlers AA. Raccoon ( Procyon lotor ) Activity is Better Predicted by Water Availability than Land Cover in a Moderately Fragmented Landscape. Northeast Nat. 2016;23(3):352-63.

Henner CM, Chamberlain MJ, Leopold BD, Burger LW. A multi-resolution assessment of raccoon den selection. J Wildl Manag. 2004;68(1):179-87.

Gehring TM, Swihart RK. Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv. 2003;109(2):283-95.

Randa LA, Yunger JA. Carnivore occurrence along an urban-rural gradient: a landscape-level analysis. J Mammal. 2006;87(6):1154-64.

Haskell DE, Webster CR, Flaspohler DJ, Meyer MW. Relationship between Carnivore Distribution and Landscape Features in the Northern Highlands Ecological Landscape of Wisconsin. Am Midl Nat. 2013;169(1):1-16.

Tardy O, Massé A, Pelletier F, Mainguy J, Fortin D. Density-dependent functional responses in habitat selection by two hosts of the raccoon rabies virus variant. Ecosphere. 2014;5(10):1-16.

Kobayashi F, Toyama M, Koizumi I. Potential resource competition between an invasive mammal and native birds: overlap in tree cavity preferences of feral raccoons and Ural owls. Biol Invasions. 2014;16(7):1453-64.

Balkenhol N, Köhnemann BA, Gramlich S, Michler F-UF. Genetic structure of a raccoon population (Procyon lotor) in Müritz National Park – a result of landscape resistance or space-use behaviour? Beitr Jagd- U Wildforsch. 2011;36:531-7.

Wang Y, Allen ML, Wilmers CC. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol Conserv. 2015;190:23-33.

Kresta AE, Henke SE, Pence DB. Baylisascaris procyonis in raccoons in Texas and its relationship to habitat characteristics. J Wildl Dis. 2010;46(3):843-53.

Urban D. Raccoon populations, movement patterns, and predation on a managed waterfowl marsh. J Wildl Mgmt. 1970;34:372-83.

Clark WR, Hasbrouck JJ, Kienzler JM, Glueck TF. Vital statistics and harvest of an Iowa raccoon population. J Wildl Mgmt. 1989;53:982-90.

Gehrt SD, Fritzell EK. Resource distribution, female home range dispersion and male spatial interactions: group structure in a solitary carnivore. Anim Behav. 1998;55(5):1211-27.

Michler F-U. Säugetierkundliche Freilandforschung zur Populationsbiologie des Waschbären (Procyon lotor Linnaeus, 1758) in einem naturnahen Tieflandbuchenwald im Müritz-Nationalpark (Mecklenburg-Vorpommern). [dissertation]. [Dresden, Germany]: Technische Universität Dresden; 2016.

Lockwood JL, Hoopes MF, Marchetti MP. Invasion Ecology. 2nd ed. Chichester, West Sussex, UK: John Wiley & Sons; 2013. 466 p.

Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A. Evidence of climatic niche shift during biological invasion. Ecol Lett. 2007;10(8):701-9.

Fischer ML, Sullivan MJP, Greiser G, Guerrero-Casado J, Heddergott M, Hohmann U, Keuling O, Lang J, Martin I, Michler F-U, Winter A, Klein R. Assessing and predicting the spread of non-native raccoons in Germany using hunting bag data and dispersal weighted models. Biol Invasions. 2016;18(1):57-71.

Mori E, Mazza G, Menchetti M, Panzeri M, Gager Y, Bertolino S, Di Febbraro M. The masked invader strikes again: the conquest of Italy by the Northern raccoon. Hystrix Ital J Mammal. 2015;26(1):47-51.

Farashi A, Kaboli M, Karami M. Predicting range expansion of invasive raccoons in northern Iran using ENFA model at two different scales. Ecol Inform. 2013;15:96-102.

Di Febbraro M, Lurz PWW, Genovesi P, Maiorano L, Girardello M, Bertolino S. The Use of Climatic Niches in Screening Procedures for Introduced Species to Evaluate Risk of Spread: A Case with the American Eastern Grey Squirrel. PLoS One. 2013;8(7):e66559.

Rioux Paquette S, Talbot B, Garant D, Mainguy J, Pelletier F. Modelling the dispersal of the two main hosts of the raccoon rabies variant in heterogeneous environments with landscape genetics. Evol Appl. 2014;7(7):734-49.

García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y, Prieto B, Pérez M, Herrera J, García-Román L. Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions. 2012;14(7):1305-10.

Crimmins SM, Walleser LR, Hertel DR, McKann PC, Rohweder JJ, Thogmartin WE. Relating mesocarnivore relative abundance to anthropogenic land-use with a hierarchical spatial count model. Ecography. 2016;39(6):524-32.

Breiner FT, Guisan A, Bergamini A, Nobis MP. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol. 2015;6(10):1210-8.

Elith J, H. Graham C, P. Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton RMcCM, Townsend Peterson A, Philips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29(2):129-51.

Uden DR, Allen CR, Angeler DG, Corral L, Fricke KA. Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions. 2015;17(10):2831-50.

Zohmann M, Pennerstorfer J, Nopp-Mayr U. Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecol Model. 2013;254:22-32.

Sachser F, Nopp-Mayr U, Zohmann M, Schweiger A-K, Grünschachner-Berger V, Immitzer M. Searching the right tie—Expert-based vs. statistical niche modeling for habitat management at the alpine treeline ecotone. Ecol Eng. 2017;100:107-19.

Huber-Bachmann E. Österreich. Zahlen. Daten. Fakten. 10th ed. Wien: Statistik Austria; 2015. 76 p.

Ludwig G, Haupt H, Gruttke H, Binot-Hafke M. Methodik der Gefährdungsanalyse für Rote Listen. In: Haupt H, Ludwig G, Gruttke H, Binot-Hafke M, Otto C, Pauly A, editors. Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Bonn : Bundesamt für Naturschutz; 2009. p. 19-71. (Naturschutz und Biologische Vielfalt; vol. 1.)

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231-59.

Duscher T, Nopp-Mayr U. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides) in Austria and first range predictions for alpine environments. Arch Biol Sci. 2017;https://doi.org/10.2298/ABS161124009D.

Jaynes ET. Information Theory and Statistical Mechanics. Phys Rev. 1957;106(4):620-30.

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43-57.

Schröder B. Species in dynamic landscapes - Patterns, processes, and functions [Habilitation treatise]. [Potsdam]: University of Potsdam; 2008.

Pearce J, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model. 2000;133(3):225-245.

Graser WH, Gehrt SD, Hungerford LL, Anchor C. Variation in demographic patterns and population structure of raccoons across an urban landscape. J Wildl Manag. 2012;76(5):976-86.

Mech LD, Barnes DM, Tester JR. Seasonal Weight Changes, Mortality, and Population Structure of Raccoons in Minnesota. J Mammal. 1968;49(1):63-73.

Gehrt SD, Clark WR. Raccoons, Coyotes, and Reflections on the Mesopredator Release Hypothesis. Wildl Soc Bull. 2003;31(3):836-42.

Neseni R. Winterruhe oder Winterschlaf des Waschbären. Z Säugetierk. 1952;18:81-109.

Lagoni-Hansen A. Der Waschbär. Mainz, Germany: Dieter Hoffmann; 1981. 122 p.

Sanderson GC, Nalbandov AV. The Reproductive Cycle of the Raccoon in Illinois. Ill Nat Hist Surv Bull. 1973;31:29-85.

Hof AR. Alien species in a warming climate: a case study of the nutcracker and stone pines. Biol Invasions. 2015;17(5):1533-43.

Michler F-U. Der Waschbär. In: Neubürger auf dem Vormarsch. München, Germany: Deutscher Landwirtschaftsverlag; 2007. p. 36-59.

Flüsse und Seen [Internet]. Vienna (A): BMLFUW. [date unknown] [updated 24 Oct 2011; cited 2017 Jun 17]. Available: https://www.bmlfuw.gv.at/wasser/wasser-oesterreich/zahlen/fluesse_seen_zahlen.html. German.

Hohmann U, Voigt S, Andreas U. Raccoons take the offensive. A current assessment. In: Kowarik I, Starfinger U, editors. Biologische Invasionen: Herausforderung zum Handeln? Berlin : Institut für Oekologie der TU Berlin; 2002. p. 191-2.

Roussere GP, Murray WJ, Raudenbush CB, Kutilek MJ, Levee DJ, Kazacos KR. Raccoon roundworm eggs near homes and risk for larva migrans disease, California communities. Emerg Infect Dis. 2003;9(12):1516-22.

Morrison ML, Marcot BG, Mannan RW. Wildlife-habitat relationships: concepts and applications. 3rd ed. Washington: Island Press; 2006. 520 p.

Tipton A. Mathematical Modeling in Wildlife Management. In: Schemnitz SD, editor. Wildlife management technical manual. Washington DC: Wildlife Society; 1980. p. 211-20.

Austin MP. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model. 2002;157(2-3):101-18.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 ARCHIVES OF BIOLOGICAL SCIENCES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.