Carotenoids in mature green and ripe red fruits of tomato (<i>Solanum lycopersicum </i>L.) grown under different levels of irrigation

Authors

  • Ralf M Schweiggert Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart
  • Jochen U Ziegler Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart
  • Ehab M.R. Metwali 1. Biological Science Department, Faculty of Science, King Abdulaziz University, P. O. Box 80257, 21589 Jeddah, Saudi Arabia. 2. Botany Department, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt.
  • Omar A Almaghrabi Biological Science Department, Faculty of Science, King Abdulaziz University, P. O. Box 80257, 21589 Jeddah
  • Naif M Kadasa Biological Science Department, Faculty of Science, King Abdulaziz University, P. O. Box 80257, 21589 Jeddah
  • Reinhold Carle 1. Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany 2. Biological Science Department, Faculty of Science, King Abdulaziz University, P. O. Box 80257, 21589 Jeddah, Saudi Arabia.

Keywords:

antioxidants, β-carotene, lycopene, lutein, vitamin A

Abstract

The effect of water deficit on concentrations of carotenoids was investigated in ripening tomatoes using HPLC-PDA. Fifteen different tomato cultivars were grown under three levels of water supply and unripe and fully-ripe fruits were harvested at different stages. Water deficit significantly affected several morphological and fruit yield-related parameters. In unripe tomato fruits, the relative concentrations of xanthophyll cycle carotenoids, e.g., violaxanthin and antheraxanthin, were significantly increased at the expense of β-carotene upon limiting the water supply. In ripe fruits, nutritionally-relevant lycopene, β-carotene and lutein levels were broadly independent of water deficit when considering all 15 cultivars, although significant variations were observed among fruits from different genotypes. Our study highlights the importance of careful genotype selection for the production of tomatoes rich in nutritionally-relevant compounds like lycopene and β-carotene.

https://doi.org/10.2298/ABS160308102S

Received: March 8, 2016; Revised: June 12, 2016; Accepted: June 20, 2016; Published online: October 31, 2016

How to cite this article: Schweiggert RM, Ziegler JU, Metwali EMR, Mohamed FH, Almaghrabi OA, Kadasa NM, Carle R. Carotenoids in mature green and ripe red fruits of tomato (Solanum lycopersicum L.) grown under different levels of irrigation. Arch Biol Sci. 2017;69(2):305-14.

Downloads

Download data is not yet available.

References

Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327(5967):818-22.

Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica. 2007;156(1-2):1-13.

Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, van der Knaap E, Cañizares J. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 2015;16(1):1-19.

FAOSTAT database of the Food and Agriculture Organization of the United Nations. Production Crops. [Internet document]. Food and Agriculture Organization of the United Nations. 2015 - [cited in 2016]. Available from: http://faostat.fao.org/site/567/default.aspx#ancor.

Rinaldi M, Garofalo P, Rubino P, Steduto P. Processing tomatoes under different irrigation regimes in Southern Italy: Agronomic and economic assessments in a simulation case study. J Agrometeorol. 2011;3(3):39-56.

Mao Y, Nijssen B, Lettenmaier DP. Is climate change implicated in the 2013-2014 California drought? A hydrologic perspective. Geophys Res Lett. 2015;42(8):2805-13.

Ripoll J, Urban L, Staudt M, Lopez-Lauri F, Bidel LPR, Bertin N. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J Exp Bot. 2014;65(15):4097-117.

Mitchell JP, Shennan C, Grattan SR, May DM. Tomato fruit yields and quality under water deficit and salinity. J Amer Soc Hort Sci. 1991;116(2):215-21.

Oliveira AB, Moura CFH, Gomes-Filho E, Marco CA, Urban L, Miranda MRA. The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. PLoS ONE. 2013;8(2):1-6.

De Pascale S, Martino A, Raimondi G, Maggio A. Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomatoes. J Hort Sci Biotechnol. 2007;82(2):283-289.

Riggi E, Patané C, Ruberto G. Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability. Aust J Agric Res. 2008;59(4):348-53.

Atkinson NJ, Dew TP, Orfila C, Urwin PE. Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J Agric Food Chem. 2011;59(17):9673-82.

Pernice R, Parisi M, Giordano I, Pentangelo A, Graziani G, Gallo M, Fogliano V, Ritieni A. Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process. Sci Hortic-Amsterdam 2010;126(2):156-63.

Pék Z, Szuvandzsiev P, Daood H, Neményi A, Helyes L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Centr Eur J Biol. 2014;9(4):383-95.

Strzalka K, Kostecka-Gugala A, Latowski D. Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol. 2003;50(2):168-72.

Latowski D, Kuczynska P, Strzalka K. Xanthophyll cycle - a mechanism protecting plants against oxidative stress. Redox Report. 2011;16(2):78-90.

Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, Meier U, Stauss R, van den Boom T, Weber E. Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenbl. Deut. Pflanzenschutzd. 1995;47:217-32.

Kopec RE, Schweiggert RM, Riedl K, Carle R, Schwartz SJ. Comparison of HPLC-MS/MS and HPLC-DAD for the quantitation of carotenoids, retinyl esters, α-tocopherol, and phylloquinone in chylomicron-rich fractions of human plasma. Rapid Comm Mass Spec. 2012;27(12):1393-402.

Meléndez-Martínez AJ, Stinco CM, Liu C, Wang XD. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem. 2013;138(2-3):1341-50.

Molnár P, Szabolcs J. (Z/E)-photoisomerization of C40-carotenoids by iodine. J Chem Soc, Perkin Transactions. 1993;2(2):261-66.

Aschoff JK, Kaufmann S, Kalkan O, Neidhart S, Carle R, Schweiggert RM. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices [Citrus sinensis (L.) Osbeck]. J Agric Food Chem. 2015;63(2):578-7.

Britton G. UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H, editors. Carotenoids. Volume 1B: Spectroscopy. Basel, Boston, Berlin: Birkhäuser Verlag; 1995. p. 13-62.

Laval-Martin D, Quennemet J, Monéger R. Pigment evolution in Lycopersicon esculentum fruits during growth and ripening. Phytochemistry. 1975 11;14(11):2357-62.

Bramley PM. Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot. 2002;53(377):2107-13.

Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 1994;105(1):405-13.

Choi SH, Lee SH, Kim HJ, Lee IS, Nobuyuki K, Levin CE, Friedman M. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem. 2010;58(13):7547-56.

Schweiggert RM, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Crit Rev Food Sci Nutr. Forthcoming 2017. DOI: 10.1080/10408398.2015.1012756.

Simpson DJ, Baqar MR, McGlasson WB, Lee TH. Changes in ultrastructure and pigment content during development and senescence of fruits of normal and rin and nor mutant tomatoes. Aust J Plant Physiol. 1976;3:575-87.

Harris WM, Spurr AR. Chromoplasts of tomato fruits. II. The red tomato fruit. Amer J Bot. 1969;56(4):380-9.

Britton G. Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H, editors. Carotenoids. Vol. 4: Natural functions. Basel: Birkhäuser Verlag; 2008. p. 189-236.

Rabinowitch HD, Budowski P, Kedar N. Carotenoids and epoxide cycles in mature-green tomatoes. Planta. 1975;122(1):91-7.

Davison PA, Hunter CN, Horton P. Overexpression of ß-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature. 2002;418(6894):203-6.

Pieters AJ, Tezara W, Herrera A. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit. Ann Bot. 2003;92(3):393-9.

Fanasca S, Colla G, Maiani G, Venneria E, Rouphael Y, Azzini E, Saccardo F. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J Agric Food Chem. 2006;54(12):4319-25.

Naphade AS. Effect of water regimes on the quality of tomato. Mah J Hort 1993;7(2):55-60.

Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric. 2003;83(5):369-82.

Matsuzoe N, Zushi K, Johjima T. Effect of soil water deficit on coloring and carotene formation in fruits of red, pink, and yellow type cherry tomatoes. J Jap Soc Hort Sci. 1998;67(4):600-6.

Zushi K, Matsuzoe N. Effect of soil water deficit on vitamin C, sugar, organic acid, amino acid and carotene contents of large-fruited tomatoes. J Jap Soc Hort Sci. 1998;67(6):927-33.

Baranksi R, Goldman I, Nothnagel T, Scott JW. Improving color sources by plant breeding and cultivation. In: Carle R, Schweiggert RM, editors. Handbook on Natural Pigments in Food and Beverages. Amsterdam: Elsevier; 2016. p. 429-72.

Downloads

Published

2017-05-25

How to Cite

1.
Schweiggert RM, Ziegler JU, Metwali EM, Almaghrabi OA, Kadasa NM, Carle R. Carotenoids in mature green and ripe red fruits of tomato (&lt;i&gt;Solanum lycopersicum &lt;/i&gt;L.) grown under different levels of irrigation. Arch Biol Sci [Internet]. 2017May25 [cited 2024Mar.29];69(2):305-14. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/299

Issue

Section

Articles