Pollen viability in Quercus robur l.

Branislava Batos, Danijela Miljković


The variability of viability (germination rate and the length of pollen tubes) of fresh pedunculate oak (Quercus robur L.) pollen grains was studied in vitro on a medium containing 15% sucrose. Spatial variability was studied by sampling fresh pollen grains from a total of thirteen trees at four different sites in the area of Belgrade (Košutnjak, Banovo Brdo, Ada Ciganlija and Bojčin Forest) in a single year (2011). In order to assess temporal variability and determine the effects of climate change on a small time scale, we studied the viability of the pollen grains collected from one tree at the Banovo Brdo site in six different years (2004, 2005, 2006, 2007, 2011 and 2012). Interindividual variability was tested on the pollen grains sampled from eight trees at Ada Ciganlija in 2004. The percentage values of the pollen grain germination rate and the pollen tube length showed no statistically significant differences between the sites. However, the studied characteristics of the pollen grain viability (germination rate and pollen tube length) showed statistically significant differences in both temporal (between the pollen collection years) and interindividual variability. This type of research makes a valuable contribution to pedunculate oak breeding programs through the identification of trees with stable production and a good quality of pollen. Furthermore, it can be important in defining the patterns of spatial, temporal and individual variability of pollen grain viability under the influence of climate factors, which are showing compelling changing trends from year to year.

DOI: 10.2298/ABS160121084B

Received: January 21, 2016; Revised: June 22, 2016; Accepted: June 22, 2016; Published online: September 23, 2016

How to cite this article: Batos B, Miljković D. Pollen viability in Quercus robur l. Arch Biol Sci. 2017;69(1):111-7.


pollen; pedunculate oak; pollen tube length; germination rate

Full Text:



Bobinac M. A contribution to the study of stand degradation process on the territory of Fruška Gora national park. Proc Nat Sci. Matica Srpska. 2003;105:61-73.

Thomas FM, Blank R, Hartmann G. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathol. 2003;32(4-5):277-307.

Helama S, Laanelaid A, Raisio J, Tuomenvirta H. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil. 2009;319:163-74.

Bobinac M. Oplodna sječa u šumi hrasta lužnjaka i poljskog jasena u Srijemu i njene specifičnosti. Works. 2007;42(1):35-46. Croatian.

Batos B. [Diversity of Pedunculate Oak (Quercus robur L.)]. Belgrade: Zadužbina Andrejević; 2012. 102 p. Serbian.

Puc M, Wolski T. Betula and Populus pollen counts and metrological conditions in Szczecin, Poland. Ann Agr Env Med. 2002;9:65-69.

Pukacki PM, Chalupka W. Environmental pollution changes in membrane lipids, antioxidants and vitality of Scots pine (Pinus silvestris L.) Pollen. Acta Soc Bot Pol. 2003;72(2):99-104.

Rezanejad F. Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana. 2009;48:205-13.

Šijačić-Nikolić M, Isajev V. Importance of morpho-physiological properties of Serbian spruce (Picea omorika /Panč./Purkyne) pollen for interspecific hybridization. Bullet Faculty Forestry. 2001;84:85-91.

Rushton BS. Pollen grain size in Quercus robur and Quercus petraea. Watsonia. 1976;11(2):137-40.

Solomon AM. Pollen morphology and plant taxonomy of red oaks in eastern north America. Am J Bot. 1983;70(4):495-507.

Minihan BV, Rushton SB. The taxonomic status of oaks (Quercus spp.) in Breen Wood, Co. Antrim, Northern Ireland. Watsonia. 1984;15:27-32.

Bacilieri R, Ducousso A, Kremer A. Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a Mixed Stand of Northwest of France. Silvae Genetica. 1994;44(1):1-10.

Boavida LC, Silva JP, Feijó JA. Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Plant Reprod. 2001;14(3):143-52.

Syed TS, Habib A, Roshan Z. Pollen morphology of three species of Quercus (Family Fagaceae). J Agric Soc Sci. 2005 1(4):359-60.

Makino M, Hayashi R, Takahara H. Pollen morphology of the genus Quercus by scanning electron microscope. Scientific Reports of Kyoto Prefectural University, Life and Environmental Sciences. 2009;61:53-81.

Kedves M, Pardutz A, Varga B. Experimental investigations of the pollen grains of Quercus robur L. Taiwania. 2002;47(1):43-53.

Lindbladh M, O Konnor R, Jacobson GL. Morphometric analysis of pollen grains for paleological studies: classification of Picea from eastern North America. Am J Bot. 2002;89(9): 1459-67.

Van der Knaap WO, Van Leeuwen JFN, Finsinger W, Gobet E, Pini R, Schweizer A, Valsecchia V, Ammann B. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quaternary Sci Rev. 2005;24:645-80.

Liu Y, Zetter R, Ferguson DK, Mohr BAR. Discrimination fossil evergreen and deciduous Quercus pollen: A case study from Miocene of eastern China. Rev Paleo Palyn. 2007;145:289-303.

Naryshkina NN, Evstigneeva TA. Sculpture of pollen grains of Quercus L. from the Holocene of the south of the Sea of Japan. Paleontol J. 2009;43(10):1309-15.

Panahi P, Pourmajidian MR, Fallah A, Pourhashemi M. Pollen morphology of Quercus (subgenus Quercus, section Quercus) in Iran and its systematic implication. Acta Soc Bot Pol. 2012;81(1):33-41.

Jato V, Rodrigez-Rajo FJ, Mendez J, Aira MJ. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol. 2002;46:176-84.

Gomez-Casero MT, Hidalgo PJ, Garcia-Mozo H, Dominguez E, Galan C. Pollen biology in four Mediterranean Quercus species. Grana. 2004;43:22-30.

Kasprzyk I. Forecasting the start of Quercus pollen season using several methods – the evaluation of their efficiency. Int J Biometeorol. 2009;53:345-53.

Franjić J, Sever K, Bogdan S, Škvorc Ž, Krstonošić D. Phenological asynchronization as a restrictive factor of efficient pollination in clonal seed orchards of Pedunculate Oak (Quercus robur L.). Croat J For Eng. 2011;32(1):141-56.

Grewling L, Jackowiak B, Smith M. Variations in Quercus sp. pollen seasons (1996-2011) in Poznan, Poland, in relation to meteorological parameters. Aerobiologia (Bologna). 2014; 30(2):149-59.

Cecich RA. Pollen tube growth in Quercus. Forest Science. 1997;43(1):140-6.

Tucović A, Bobinac M, Isajev V. Individual variability of pedunculate oak inflorescence on the same tree and its significance. In: Proceedings of the 7th Symposium on Flora of Southeastern Serbia and Neighboring Regions; 2002 June 5-9; Dimitrovgrad, Macedonia. Niš (Serbia): Faculty of Science; 2002.. 171-176. Serbian.

Sever K, Škvorc Ž, Bogdan S, Franjić J, Krstonošić D, Alešković I, Kereša S, Fruk G, Jemrić T. In vitro pollen germination and pollen tube growth differences among Quercus robur L. clones in response to meteorological conditions. Grana. 2012;51(1):25-34.

Batos B. Variability of pollen morphological traits of pedunculate oak (Quercus robur L.). Šumarstvo. 2014;3-4:91-102. Croatian.

Kirby EG, Stanley RG. Pollen handling techniques in forest genetics, with special reference to incompatibility. In: Miksche JP, editor. Modern Methods in Forest Genetics. Berlin: Springer-Verlag; 1976. p. 229-41.

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97.

Vazquez FM, Suarez MA, Baselga MP. Relation of the germination pollen grains "in vitro" with the temperature and humidity, from two species. Forest Syst. 1996 5(2):351-9.

Arista M, Talavera S. Pollen dispersal capacity and pollen viability of Abies pinsapo Boiss. Silvae Genet. 1994;43(2-3):155-8.

Batos B, Miljković D, Bobinac M. Some characters of the pollen of spring and summer flowering common oak (Quercus robur L.). Arch Biol Sci. 2012;64(1):89-95.

Batos B, Nikolić MB. Variability of in vitro germination of Picea omorika. Dendrobiol. 2013;69:13-9.

Schueler S, Schlunzen KH, Scholz F. Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees-Struc Funct. 2005;19:154-61.

Denisow B, Wrzesien M, Bozek M, Jezak A, Strzalkowska-Abramek M. Flowering, pollen characteristics and insect foraging on Campanula bononiensis (Campanulaceae), a protected species in Poland. Acta Agrobot. 2014;67(2):13.

Denisow B, Malgorzata W. The habitat effect on the diversity of pollen resources in several Campanula spp. – an implication for pollinator conservation. J Apic Res. 2014;54(1):62-71.

Pulkkinen P, Rantio-Lehtimaki A. Viability and seasonal distribution patterns of Scots pine pollen in Finland. Tree Physiol. 1995;15:515-8.

Parantainen A, Pulkkinen P. Pollen viability of Scots pine (Pinus sylvestris) in different temperature conditions: height levels of variation among and within latitudes. Forest Ecol Man. 2002;167(1-3):149-160.

Tucović A, Jovanović B. Some characteristics of meiosis in common oak (Quercus robur L). In: Proceedings, IUFRO, Section 22, Working Group Meeting on the Sexual Reproduction of Forest Trees; 1970 May 20-June 5; Varparanta, Finland. Helsinki: Finnish Forest Research Institute; 1970. 41 p.


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.