Distribution of β-lactamase genes of Klebsiella pneumoniae isolates in Zhejiang province, China, and regulation of gene expression

Jin-Fang Zhao, Qiang Wang, Yu-Mei Ge, Pan-Li Tan, Yi-Min Chen, Jie Yan

Abstract


Klebsiella pneumoniae is a common causative agent of nosocomial infections with a high level of resistance toward β-lactam antibiotics. Our previous study showed that TEM-1 and SHV-11 are the predominant β-lactamase-encoding genes of K. pneumoniae isolates in the Zhejiang area, China. In this study, more clinical K. pneumoniae isolates were collected for detecting their β-lactamase-encoding gene profiles by PCR and sequencing. qRT-PCR was then performed to determine the role of cefotaxime or penicillin in low concentrations to induce the β-lactamase gene expression of K. pneumoniae isolates. Moreover, the K. pneumoniae isolates were pretreated with closantel (CLO), a histidine kinase inhibitor, before antibiotic treatment, and qRT-PCR and the β-lactamase phenotype confirmatory test were then applied to determine the effect of CLO on the expression of the β-lactamase genes. The results showed that, except for KPC-2, the 1/4 MIC cefotaxime or penicillin induced significant mRNA elevation of the TEM-1, CTX-M-14, SHV-11 and OXA-1 β-lactamase genes, but this induction could be inhibited by CLO. After pretreatment with CLO, 78.4~81.4% of the β-lactam-resistant isolates became sensitive and the positive rate of the β-lactamase production phenotype in the isolates was decreased from 100% to 27.1%. The data indicate that TEM-1 (70.7%), SHV-11 (64.2%) and CTX-M-14 (40.5%) are the predominant β-lactamase genes of the K. pneumoniae isolates in Zhejiang and sublethal dosage of β-lactam antibiotics can induce the β-lactamase gene expression of K. pneumoniae through histidine kinase-mediated two-component signaling systems.

https://doi.org/10.2298/ABS160512112Z

Received: May 12, 2016; Revised: July 21, 2016; Accepted: August 15, 2016; Published online: October 31, 2016

How to cite: Zhao JF, Wang Q, Ge YM, Tan PL, Chen YM, Yan Jie. Distribution of β-lactamase genes of Klebsiella pneumoniae isolates in Zhejiang province, China, and regulation of gene expression. Arch Biol Sci. 2017;69(3):399-407.


Keywords


Klebsiella pneumonia; resistance; β-lactamases; gene expression; closantel

Full Text:

PDF

References


Struve C, Krogfelt KA. Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environ Microbiol. 2004;6(6):584-90.

Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603.

Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens. 2014;3(3):743-58.

Bouza E, Cercenado E. Klebsiella and enterobacter: antibiotic resistance and treatment implications. Semin Respir Infect. 2002;17(3):215-30.

Paterson DL. Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med. 2006;119(6 Suppl 1):S20-8;S62-70.

Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162-71.

Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557-84.

Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol. 2005;8(5):518-24.

Bush K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Crit Care. 2010;14(3):224.

Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657-86.

Chong Y, Ito Y, Kamimura T. Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol. 2011;11(7):1499-504.

Lynch JP 3rd, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother. 2013;14(2):199-210.

Kiratisin P, Apisarnthanarak A, Laesripa C, Saifon P. Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother. 2008;52(8):2818-24.

Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis. 2013;56(9):1310-8.

Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, Parvin M, Yadegarinia D. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist. 2010;16(1):49-53.

Yim G, Wang HH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci. 2007; 362(1483):1195-200.

Fajardo A, Martínez JL. Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol. 2008; 11(2):161-7.

Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res Int. 2013;20(6):3539-49.

Wu Y, Sun A, Zhao J, Ge Y, Yan J. [Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2013;42(2):131-40. Chinese.

Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev. 2007;20(1):79-114.

Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol. 2010;13(2):232-9.

Schreiber M, Res I, Matter A. Protein kinases as antibacterial targets. Curr Opin Cell Biol. 2009;21(2):325-30.

Wang Q, Ge YM, Sun AH, Liu JF, Wang Y, Yan J. [Genotypes of β-lactamase in Klebsiella pneumoniae isolates and induction and inhibition of the β-lactamase gene expression]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 2013;33(12):916-21. Chinese.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-fifth Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute, USA. 2015.

Bradford PA. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933-51.

Turner MS, Andersson P, Bell JM, Turnidge JD, Harris T, Giffard PM. Plasmid-borne blaSHV genes in Klebsiella pneumoniae are associated with strong promoters. J Antimicrob Chemother. 2009;64(5):960-4.

Shi W, Qin J, Mi ZA. Klebsiella pneumoniae sputum culture isolate from China carrying blaOXA-1, blaCTX-M-55 and aac(6')-Ib-cr. J Med Microbiol. 2008;57(Pt 12):1588-99.

Holstein A, Grillon A, Yzon L, Morange V, Baty G, Lartigue MF, Mereghetti L, Goudeau, A, Lanotte P. Prevalence of extended-spectrum beta-lactamases of the CTX-M type producing Escherichia coli and Klebsiella pneumoniae in Bretonneau hospitals (CHRU Tours). Pathol Biol (Paris). 2010;58(1):67-9.

Pfaffl MW, Horgan, GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.

Kumagai Y, Cheng Z, Lin M, Rikihisa Y. Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect Immun. 2006;74(9):5014-22.

Gootz TD. The global problem of antibiotic resistance. Crit Rev Immunol. 2010; 30(1):79-93.

Hu FP, Zhu DM, Wang F, Jiang XF, Sun ZY, Chen ZJ, Hu ZD, Li J, Xie Y, Kang M, Xu YC, Zhang XJ, Zhang ZX, Ji P, Wang CQ, Wang AM, Ni YX, Sun JY, Yu YS, Lin J, Chu YZ, Tian SF, Xu YH, Shen JL, Shan B, Du Y, Zhuo C, Su DH, Zhang H, Kong J, Wei LH, Wu L, Hu YJ, Ai XM. CHINET 2013 surveillance of bacterial resistance in China. Clin J Infect Chemother. 2014;14(5):365-74. Chinese.

Brolund A. Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect Ecol Epidemiol. 2014;4:24555.

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of globaldimensions. Clin Microbiol Rev. 2012;25(4):682-707.

Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zdanowicz I, Luzzaro F, Poirel L, Woodford N. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165-174.

Ling TK, Xiong J, Yu Y, Lee CC, Ye H, Hawkey PM. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China. Antimicrob Agents Chemother. 2006;50(1):374-8.

Rossi F. The challenges of antimicrobial resistance in Brazil. Clin Infect Dis. 2011;52(9):1138-43.

Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, Kamimura T, Shimono N, Akashi K. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol. 2013;62(Pt 7):1038-43.

Xia S, Fan X, Huang Z, Xia L, Xiao M, Chen R, Xu Y, Zhuo C. Dominance of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from patients with community-onset and hospital-onset infection in China. PLoS One. 2014;9(7):e100707.

Muzaheed, Doi Y, Adams-Haduch JM, Endimiani A, Sidjabat HE, Gaddad SM, Paterson DL. High prevalence of CTX-M-15-producing Klebsiella pneumoniae among inpatients and outpatients with urinary tract infection in Southern India. J Antimicrob Chemother. 2008;61(6):1393-4.

Zhuo C, Su DH, Li HY, Wang LX, Liao K, Wang M, Zhi ZQ, Guo ZH, Wei YC, Geng SN, Jin GY, Zhong NS. Study on CTX-M type ESBLs-producing Escherichia coli and Klebsiella pneumoniae in Guangzhou. Chin J Lab Med. 2009; 32(10):1114-9. Chinese.

Cui XP, Li LQ, Rong JR, Wang SF, Zhou X, Li HH. Genotyping of ESBL and AmpC produced by Klebsiella pneumoniae. Chin J Lab Med. 2010; 33(3):262-4. Chinese.

Lee N, Yuen KY, Kumana CR. Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs. 2003;63(14):1511-24.

Chen J, Shang X, Hu F, Lao X, Gao X, Zheng H, Yao W. β-Lactamase inhibitors: an update. Mini Rev Med Chem. 2013; 13(13):1846-61.

Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems. Genes Dev. 2008; 22(19):2601-11.

Hansen J, Mailand E, Swaminathan KK, Schreiber J, Angelici B, Benenson Y. Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc Natl Acad Sci U S A. 2014;111(44):15705-10.

Worthington RJ, Melander C. Combination approaches to combat multidrug resistant bacteria. Trends Biotechnol. 2013;31(3):177-84.

Bacon JA, Ulrich RG, Davis JP, Thomas EM, Johnson SS, Conder GA, Sangster NC, Rothwell JT, McCracken RO, Lee BH, Clothier MF, Geary TG, Thompson DP. Comparative in vitro effects of closantel and selected beta-ketoamide anthelmintics on a gastrointestinal nematode and vertebrate liver cells. J Vet Pharmacol Ther. 1998; 21(3):190-8.

Sood S. Comparative Evaluation of the in-vitro Activity of Six β-lactam/β-lactamase Inhibitor Combinations against Gram Negative Bacilli. J Clin Diagn Res. 2013;7(2):224-8.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 ARCHIVES OF BIOLOGICAL SCIENCES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.