Raman spectral analysis of the brainstem and responses of neuroglia and cytokines in whole-body gamma-irradiated rats after administration of aminothiol-based radioprotector GL2011

Authors

DOI:

https://doi.org/10.2298/ABS210129011K

Keywords:

Rat brainstem, Irradiation, Radioprotector GL2011, Raman microspectroscopy, glial cell markers, cytokines

Abstract

Paper description:

  • We studied a novel radioprotector, GL2011 on the molecular and cellular signatures of neuroinflammation in surviving Wistar rats with focus on the brainstem.
  • Raman microspectroscopy served to follow the molecular changes on gamma-irradiated rat brainstem tissue, immunohistochemistry the response of neuroglia, and global inflammation was examined by screening cytokines (IL-6, TNF-α, IL-10) in blood plasma.
  • GL2011 mitigated the effect of radiation on nucleic acids and preserved astrocyte and microglia morphology, decreasing microglial infiltration in the brainstem. A global immunomodulatory effect was observed.
  • Application of the radioprotector after radiation confers better protection, suggesting translation to treatment of radiation accidents.

Abstract: The search for an effective and non-toxic radioprotector is ongoing. We tested a novel, natural aminothiol-based radioprotector, GL2011, that was applied 30 min, 3 h or 6 h after the exposure of male albino Wistar rats to a 6.7 Gy mild dose of gamma radiation. The molecular signatures of radioprotection were investigated with Raman microspectroscopy of brainstem tissue samples. Morphological changes and activation of astrocytes and microglia were assessed by immunohistochemistry. Global markers of neuroinflammation were followed by ELISA to monitor blood plasma levels of proinflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines. A thirty-day follow-up determined survival of unprotected animals 37.5%. A survival increase was observed after radioprotection (75%, irrespective of the time of application). Raman spectra revealed a slightly deleterious effect of radiation on nucleic acids in surviving animals that was mitigated with the radioprotector, as GL2011 preserved the morphology of both astrocytes and microglia, with reduced microglial infiltration. Cytokine assessment revealed an immunomodulatory effect of the novel radioprotector. The overall results point out the positive effects of a single dose of GL2011 applied at different times. The molecular and cellular changes in the brainstem indicate that the radioprotector applied after radiation conferred better protection, which underlines its translation to cure radiation accidents.

Downloads

Download data is not yet available.

References

Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of Ionizing Radiation on Biological Molecules - Mechanisms of Damage and Emerging Methods of Detection. Antioxid Redox Signal. 2014;21(2):260-92. https://doi.org/10.1089/ars.2013.5489

Balentova S, Adamkov M. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review. Int J Mol Sci. 2015;16(11):27796-815. https://doi.org/10.3390/ijms161126068

Smart D. Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction. Semin Radiat Oncol. 2017;27(4):332-9.

White RJ, Abel S, Horne ZD, Lee J, Edington H, Greenberg L, Younes H, Hilton C, Wegner RE. Melanoma brain metastases: is it time to eliminate radiotherapy? J Neurooncol. 2020;149(1):27-33. https://doi.org/10.1007/s11060-020-03485-w

Facorro G, Sarrasague MM, Torti H, Hager A, Avalos JS, Foncuberta M, Kusminsky G. Oxidative study of patients with total body irradiation: effects of amifostine treatment. Bone Marrow Transplant. 2004;33(8):793-8. https://doi.org/10.1038/sj.bmt.1704427

Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf. 2019;18(11):1077-90. https://doi.org/10.1080/14740338.2019.1666104

Vardy J, Wong E, Izard M, Clifford A, Clarke SJ. Life-threatening anaphylactoid reaction to amifostine used with concurrent chemoradiotherapy for nasopharyngeal cancer in a patient with dermatomyositis: a case report with literature review: Anticancer Drugs. 2002;13(3):327-30. https://doi.org/10.1097/00001813-200203000-00015

Dziegielewski J, Goetz W, Baulch JE. Heavy ions, radioprotectors and genomic instability: implications for human space exploration. Radiat Environ Biophys. 2010;49(3):303-16. https://doi.org/10.1007/s00411-009-0261-9

Singh VK, Romaine PLP, Seed TM. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health Phys. 2015;108(6):607-30. https://doi.org/10.1097/hp.0000000000000279

Copp RR, Peebles DD, Soref CM, Fahl WE. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol. 2013;89(7):485-92. https://doi.org/10.3109/09553002.2013.770579

Kuntić VS, Stanković MB, Vujić ZB, Brborić JS, Uskoković-Marković SM. Radioprotectors - the Evergreen Topic. Chem Biodivers. 2013;10(10):1791-803. https://doi.org/10.1002/cbdv.201300054

Rosen EM, Day R, Singh VK. New Approaches to Radiation Protection. Front Oncol. 2015;4:381.

VARANDA EA, TAVARES DC. Radioprotection: mechanisms and radioprotective agents including honeybee venom. J Venom Anim Toxins. 1998;4(1):5-21. https://doi.org/10.1590/s0104-79301998000100002

Peebles DD, Soref CM, Copp RR, Thunberg AL, Fahl WE. ROS-Scavenger and Radioprotective Efficacy of the New PrC-210. Aminothiol. Radiat Res. 2012;178(1):57-68. https://doi.org/10.1667/rr2806.1

Ganesan MK, Jovanovic M, Secerov B, Ignjatovic M, Bilban M, Pavle A, Refaei AE, Jung G, Li L, Sase A, Chen W, Bacic G, Lubec G. Radiation protection from whole-body gamma irradiation (6.7 Gy): behavioural effects and brain protein-level changes by an aminothiol compound GL2011 in the Wistar rat. Amino Acids. 2014;46(7):1681-96. https://doi.org/10.1007/s00726-014-1728-9

Okić-Djordjević I, Trivanović D, Jovanović M, Ignjatović M, Šećerov B, Mojović M, Bugarski D, Bačić G, Andjus PR. Increased survival after irradiation followed by regeneration of bone marrow stromal cells with a novel thiol-based radioprotector. Croat Med J. 2014;55(1):45-9. https://doi.org/10.3325/cmj.2014.55.45

Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, Simontacchi G, Di Brina L, Bonomo P, Giacomelli I, Meattini I, Mangoni M, Cappelli S, Cassani S, Talamonti C, Bordi L, Livi L. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114(2):230-8. https://doi.org/10.1016/j.radonc.2015.01.016

Nicholls JG, Paton JFR. Brainstem: neural networks vital for life. Philos Trans R Soc B Biol Sci. 2009;364(1529):2447-51. https://doi.org/10.1098/rstb.2009.0064

Träger U, Tabrizi SJ. Peripheral inflammation in neurodegeneration. J Mol Med. 2013;91(6):673-81.

Rusiecki J, Levin LI, Wang L, Byrne C, Krishnamurthy J, Chen L, Galdzicki Z, French LM. Blast traumatic brain injury and serum inflammatory cytokines: a repeated measures case-control study among U.S. military service members. J Neuroinflammation. 2020;17(1):20. https://doi.org/10.1186/s12974-019-1624-z

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposesText with EEA relevance. Off J Eur Un. 2010;L276:33.

Logie LC, Harris MD, Tatsch RE, van Hooser EN. An Analysis of the LD 50(30) as Related to Radiation Intensity. Radiat Res. 1960;12(4):349. https://doi.org/10.2307/3571043

Basile LA, Ellefson D, Gluzman-Poltorak Z, Junes-Gill K, Mar V, Mendonca S, Miller JD, Tom J, Trinh A, Gallaher TK. HemaMaxTM, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates. PLoS ONE. 2012;7(2):e30434. https://doi.org/10.1371/journal.pone.0030434

Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, Harris JR, Deoliviera D, Sullivan JM, Chao NJ, Kirsch DG, Chute JP. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19(3):295-304. https://doi.org/10.1038/nm.3070

Reisner LA, Cao A, Pandya AK. An integrated software system for processing, analyzing, and classifying Raman spectra. Chemom Intell Lab Syst. 2011;105(1):83-90. https://doi.org/10.1016/j.chemolab.2010.09.011

Movasaghi Z, Rehman S, ur Rehman DrI. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl Spectrosc Rev. 2008;43(2):134-79. https://doi.org/10.1080/05704920701829043

Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

Lakshmi RJ, Kartha VB, Krishna CM, Solomon JGR, Ullas G, Devi PU. Tissue Raman Spectroscopy for the Study of Radiation Damage: Brain Irradiation of Mice. Radiat Res. 2002;157(2):175-82. https://doi.org/10.1667/0033-7587(2002)157[0175:trsfts]2.0.co;2

Kassayová M, Ahlersová E, Ahlers I. Two-Phase Response of Rat Pineal Melatonin to Lethal Whole-Body Irradiation With Gamma Rays. Physiol. Res. 1999;48(3):227-230.

Di Maggio F, Minafra L, Forte G, Cammarata F, Lio D, Messa C, Gilardi M, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm. 2015;12(1):14. https://doi.org/10.1186/s12950-015-0058-3

Lumniczky K, Szatmári T, Sáfrány G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front Immunol. 2017;8:517. https://doi.org/10.3389/fimmu.2017.00517

Mohd Saaya F, Katsube T, Xie Y, Tanaka K, Fujita K, Wang B. Research and Development of Radioprotective Agents: A Mini-Review. Int J Radiol. 2017;4(2):128-38. https://doi.org/10.17554/j.issn.2313-3406.2017.04.41

Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012;33(3):315-27. https://doi.org/10.1016/j.yfrne.2012.09.003

Grohmann U, Fallarino F, Bianchi R, Belladonna ML, Vacca C, Orabona C, Uyttenhove C, Fioretti MC, Puccetti P. IL-6 Inhibits the Tolerogenic Function of CD8α + Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. J Immunol. 2001;167(2):708-14. https://doi.org/10.4049/jimmunol.167.2.708

Hol JW, Stolker RJ, Klimek M, Stronks DL, Fekkes D. The tryptophan kynurenine pathway, neopterin and IL-6 during vulvectomy and abdominal hysterectomy. J Biomed Sci. 2014;21(1):102. https://doi.org/10.1186/s12929-014-0102-2

Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci. 2018;12:488. https://doi.org/10.3389/fncel.2018.00488

Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354-65. https://doi.org/10.1016/j.nurt.2010.05.014

Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119(1):7-35. https://doi.org/10.1007/s00401-009-0619-8

Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016;37(9):608-20. https://doi.org/10.1016/j.it.2016.06.006

Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol. 1997;75(10-11):1149-63. https://doi.org/10.1139/y97-146

Vincent VAM, Tilders FJH. Inhibition of Endotoxin-Induced Nitric Oxide Synthase Production in Microglial Cells by the Presence of Astroglial Cells: A Role for Transforming Growth Factor β. GLIA. 1997;19(3):190-8. https://doi.org/10.1002/(sici)1098-1136(199703)19:3<190::aid-glia2>3.0.co;2-3

Park SJ, Lee JH, Kim HY, Choi YH, Park JS, Suh YH, Park SM, Joe E, Jou I. Astrocytes, but Not Microglia, Rapidly Sense H 2 O 2 via STAT6 Phosphorylation, Resulting in Cyclooxygenase-2 Expression and Prostaglandin Release. J Immunol. 2012;188(10):5132-41. https://doi.org/10.4049/jimmunol.1101600

Mildenberger M, Beach TG, McGeer EG, Ludgate CM. An animal model of prophylactic cranial irradiation: Histologic effects at acute, early and delayed stages. Int J Radiat Oncol. 1990;18(5):1051-60. https://doi.org/10.1016/0360-3016(90)90440-u

Chiang CS, McBride WH, Withers HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol. 1993;29(1):60-8. https://doi.org/10.1016/0167-8140(93)90174-7

Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis. 2019;10(3):664-675. https://doi.org/10.14336/ad.2018.0720

Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev. 2018;98(1):477-504. https://doi.org/10.1152/physrev.00039.2016

Kenney MJ, Ganta CK. Autonomic Nervous System and Immune System Interactions. Comprehensive Physiology. 2014;4(3): 1177-200. https://doi.org/10.1002/cphy.c130051

Thyaga SR, Priyanka HP. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci. 2012;19(1):40-46. https://doi.org/10.5214/ans.0972.7531.180410

Schaue D, Kachikwu EL, McBride WH. Cytokines in Radiobiological Responses: A Review. Radiat Res. 2012;178(6):505-23. https://doi.org/10.1667/rr3031.1

Sun Y, Cheng M-K, Griffiths TRL, Mellon JK, Kriajevska M, Manson MM. Inhibition of STAT Signalling in Bladder Cancer by Diindolylmethane - Relevance to Cell Adhesion, Migration and Proliferation. Curr Cancer Drug Targets. 2013;13(1):57-68. https://doi.org/10.2174/156800913804486610

Müller K, Meineke V. Radiation-induced alterations in cytokine production by skin cells. Exp Hematol. 2007;35(4):96-104. https://doi.org/10.1016/j.exphem.2007.01.017

Kalechman Y, Albeck M, Oron M, Sobelman D, Gurwith M, Seghal SN, Sredni B. Radioprotective effects of the immunomodulator AS101. J Immunol. 1990;145(5):1512-7.

Meeren AVD, Bertho J-M, Vandamme M, Gaugler M-H. Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells. Mediators Inflamm. 1997;6(3):185-93. https://doi.org/10.1080/09629359791677

Wu C-T, Chen M-F, Chen W-C, Hsieh C-C. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol. 2013;8(1):159.

Hirano T. Interleukin 6 and its Receptor: Ten Years Later. Int Rev Immunol. 1998;16(3-4):249-84.

Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013;61(1):54-62. https://doi.org/10.1016/j.cyto.2012.08.022

Benveniste E-IN, Tang LP, Law RM. Differential regulation of astrocyte TNF-α expression by the cytokines TGF-β, IL-6 and IL-10. Int J Devl Neurosci. 1995;13(3-4):341-9. https://doi.org/10.1016/0736-5748(94)00061-7

Downloads

Published

2021-07-13

How to Cite

1.
Kočović DM, Bajuk-Bogdanović D, Maslovarić I, Božić Nedeljković B, Andjus PR, Daković M. Raman spectral analysis of the brainstem and responses of neuroglia and cytokines in whole-body gamma-irradiated rats after administration of aminothiol-based radioprotector GL2011 . Arch Biol Sci [Internet]. 2021Jul.13 [cited 2024Apr.24];73(2):161-73. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/6211

Issue

Section

Articles