
© 2019 by the Serbian Biological Society 469How to cite this article: Li X, Li J, Yang J. Liprin-β1 is up regulated in human 
hepatocellular carcinoma and is associated with advanced tumor stage. Arch Biol 
Sci. 2019;71(3):469-74.

Liprin-β1 is upregulated in human hepatocellular carcinoma and is associated with 
advanced tumor stage

Xinying Li1, Jingmei Li1,* and Jiao Yang2,#

1School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
2Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 
Suzhou, 215163, China

Corresponding authors: *ljm3023@126.com; #yangjiao@sibet.ac.cn

Received: January 16, 2019; Revised: April 3, 2019; Accepted: April 25, 2019; Published online: May 10, 2019

Abstract: Liprin-β1 is one of the broadly-expressed liprin family members. Dysregulation of liprin-β1 has been implicated 
in several types of human cancers. However, the expression of liprin-β1 and its clinicopathological significance in human 
hepatocellular carcinoma (HCC) remains elusive. We evaluated the protein expression of liprin-β1 in HCC and non-tumor 
liver tissues by immunohistochemistry, and investigated the relationship between liprin-β1 expression and the clinico-
pathological attributes of HCC. We found that liprin-β1 expression was significantly higher in HCC than in non-tumor 
liver tissues. Further analysis showed that higher levels of liprin-β1 in HCC were significantly associated with the advanced 
clinical stage. Interestingly, liprin-β1 was not detected in cholangiocellular carcinoma specimens. These findings suggest 
that an elevated expression of liprin-β1 may be involved in HCC progression, providing the rationale that upregulation of 
liprin-β1 may serve as a novel biomarker for human HCC.

Keywords: liprin-β1; hepatocellular carcinoma; cholangiocellular carcinoma; cirrhosis.

Arch Biol Sci. 2019;71(3):469-474 https://doi.org/10.2298/ABS190116029L

INTRODUCTION

Hepatocellular carcinoma (HCC) remains the lead-
ing cause of cancer-related mortality worldwide, with 
more than half a million new cases diagnosed per year 
[1-3]. Because of the insidious onset of the disease, 
HCC tends to be diagnosed at advanced stages and 
responds poorly to therapy [4,5]. Adverse prognosis 
can be attributed to the high frequency of local recur-
rence, intrahepatic invasion and distant metastases. 
Thus, identification of key factors implicated in HCC 
progression may be helpful in classifying tumor stages 
and predicting clinical outcomes.

The LAR protein-tyrosine phosphatase-interacting 
protein (liprin) family was originally found to be es-
sential for the assembly of functional presynaptic active 
zones and postsynaptic sites in neurons [6,7]. The mam-
malian liprin family includes four liprin-α (liprin-α1 to 
-α4) proteins and two liprin-β (β1 and β2) proteins [8], 
which together form heterodimers and act as scaffolds 
[9]. A number of recent studies have revealed broader 

functions of the liprin family in regulating the develop-
ment and homeostasis in other organs, including the 
mammary gland and lymphatic vessel [10,11]. Notably, 
analysis of human cancers has revealed dysfunctions of 
the liprin proteins, with evidence pointing to the differ-
ent roles of liprin family members in distinct aspects of 
tumor biology. For example, overexpression of liprin-α1 
promotes breast cancer cell invasion by regulating lamel-
lipodia stability and integrin-mediated focal adhesions 
[10,12]. By contrast, liprin-β2 impairs cell motility and 
suppresses tumor invasion, which is indicative of its role 
as a tumor suppressor [10].

Liprin-β1, encoded by PPFIBP1, is one of the 
broadly-expressed liprin members. Emerging evidence 
suggests that liprin-β1 is involved in the progression 
of various human cancers, including breast cancer 
and melanoma [10,13]. Oncogenic events related to 
liprin-β1 include aberrant fusion, alternative splicing, 
local chromosome amplification and transcriptional 
upregulation [14-17], indicating that liprin-β1 may 
serve as a putative biomarker and therapeutic candidate 
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in these cancer types. However, the clinical relevance of 
liprin-β1 in HCC has not yet been investigated.

In the present study, we assessed liprin-β1 ex-
pression in primary HCC specimens and evaluated 
its association with a series of histopathological pa-
rameters. In addition, the expression of liprin-β1 in 
cholangiocellular carcinoma (CCC), the second most 
common primary liver cancer, was also determined.

MATERIALS AND METHODS

Ethics statement, patient samples, and clinical 
information

This study was conducted on precollected samples. A 
total of 48 HCC specimens, 5 CCC specimens and 12 
tissues from patients with cirrhosis were collected at 
Tongxu People’s Hospital, Henan, China. All tissues 
were collected under the highest ethical standards 
between 2005 and 2010, and approved by the Re-
search Ethics Committee of Tongxu People’s Hospital 
(2005DKA21300). Consent forms were signed by all 
patients. The study protocol was reviewed and ap-
proved by the Research Ethics Committee of Tongxu 
People’s Hospital (BC03117). The clinicopathological 
characteristics of the patients are summarized in Sup-
plementary Table S1, with detailed information, in-
cluding patient gender, age of diagnosis, tumor grade, 
lymph node metastasis, and tumor-node-metastasis 
(TNM) stage listed in Supplementary Table S2.

Immunohistochemistry and quantification

The protein levels of liprin-β1 were determined us-
ing immunohistochemistry (IHC). 
Briefly, the tissue microarray sam-
ples were deparaffinized in xylene 
and hydrated. Antigen retrieval 
was performed with Tris-EDTA 
antigenic retrieval buffer (pH 
8.0), followed by 3% H2O2 treat-
ment to inhibit endogenous per-
oxidase activity. Tissue sections 
were blocked with 2% bovine se-
rum albumin (Cat No. A8020; So-
larbio, China) and incubated with 
anti-liprin-β1 (LS-B13770, 1:500) 

at 4°C overnight. The EnVision kit (DAKO) was used 
to detect primary antibody followed by staining with 
DAB reagent and counterstaining with hematoxylin. 
The expression of liprin-β1 was scored as 0 (absent), 
1 (weak), 2 (moderate) and 3 (strong) in a double-
blinded manner.

Statistical analysis

Patients were stratified into liprin-β1Low (score of 0-1) 
versus liprin-β1High (score of 2-3) groups. The statisti-
cal analyses were performed using GraphPad Prism 
software version 6.0. The association of categorical vari-
ables was examined by Fisher’s exact test and a P-value 
of <0.05 was considered to be statistically significant.

RESULTS

Expression of liprin-β1 was upregulated in HCC

To examine whether the expression of liprin-β1 was 
altered in HCC, protein levels of liprin-β1 were de-
tected by IHC and the staining intensity of HCC 
samples was compared with that of non-tumor liver 
tissues from patients with cirrhosis (NT). The results 
showed that liprin-β1 was strongly stained in HCC 
tissues (29/48, 60%) compared with NT (2/12, 17%), 
where only a smaller percentage of positivity was 
found (Fig. 1A and B). In addition, liprin-β1 protein 
was confirmed to be predominantly expressed in the 
parenchymal cells (Fig. 1A). These expression patterns 
of liprin-β1 in HCC tissues suggested that liprin-β1 
might be implicated in HCC formation.

Fig. 1. Expression of liprin-β1 was upregulated in HCC. A – Expression of liprin-β1 
in HCC tissues and NT tissues was determined by IHC. Tumor and NT samples were 
stratified into liprin-β1Low and liprin-β1High groups, and representative images are shown. 
Scale bars, 50 μm. B – Quantification of liprin-β1 expression in NT tissues and HCC 
samples (P<0.001).
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Liprin-β1 expression was 
positively correlated with TNM 
staging in HCC

Since the expression of liprin-β1 
varied from negative to strong in 
human HCC samples as shown 
above (Fig. 1), we explored wheth-
er its levels were associated with 
clinicopathological features of 
HCC patients. Gender or age at di-
agnosis, the two basic parameters 
related to HCC development, had 
no impact on liprin-β1 expression 
(Table 1, Fig. 2A and B). Expres-
sion of liprin-β1 did not correlate 
with tumor differentiation status 
either (Table 1). Notably, a signifi-
cant association between elevated 
liprin-β1 expression with more ad-
vanced TNM stages was evident (P 
=0.036). HCC patients with higher 
liprin-β1 expression were more 
prone to have TNM stages III-IV 
(21/29, 72%) (Fig. 3A and B). To-
gether, these data demonstrated 
that reduced liprin-β1 may be an 
indicator of malignant progression 
of HCC.

CCC showed lower expression 
of liprin-β1 than HCC

CCC represents the second most 
common primary liver cancer and 
its worldwide incidence continues 
to rise [18]. To test whether the ex-
pression levels of liprin-β1 protein 
were related to different subtypes 
of liver cancer, we compared the 
staining intensities of liprin-β1 
in HCC tissues and CCC tissues. 
Contrary to the moderately strong 
staining in HCC samples (29/48, 
60%) (Fig. 1), we barely detected 
liprin-β1 staining in CCC samples 
(0/5, 0%) (Fig. 4A). Comparison of 
liprin-β1 expression between HCC 

Fig. 2. Liprin-β1 expression was not correlated with patients’ gender or age of diagnosis 
in HCC. A – Quantification of liprin-β1 expression with gender of diagnosis (P=0.895). 
B – Quantification of liprin-β1 expression with age of diagnosis (P=0.183).

Fig. 3. Comparison of liprin-β1 expression in HCC specimens at different TNM stages. 
A – Protein expression level of liprin-β1 in HCC tissues of different TNM stages. Tumor 
samples were stratified into liprin-β1Low and liprin-β1High groups and representative images 
are shown. Scale bars, 50 μm. B – Quantification of liprin-β1 expression in HCC tissues 
at different TNM stages (P<0.05).

Fig. 4. Comparison of liprin-β1 expression between HCC and CCC. A – Expression of 
liprin-β1 in HCC and CCC was determined by IHC. The case depicted in Fig. 4A shows 
loss of liprin-β1 expression in CCC. Scale bars, 50 μm. B – Expression of the status of 
liprin-β1 in HCC and CCC samples is summarized in Fig. 4B (P<0.01).
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and CCC suggested a subtype-specific upregulation 
of liprin-β1 in liver cancers (Fig. 4B), which needs 
to be confirmed by a larger population-based study.

DISCUSSION

Understanding the molecular genetics and pathogen-
esis of HCC is urgently needed to meet research and 
clinical demands. In the present study, we provide the 
first analysis of liprin-β1 protein expression in human 
liver cancer tissues. We reported that expression lev-
els of liprin-β1 were enhanced in advanced HCC and 
was positively associated with tumor staging in HCC 
patients. Notably, liprin-β1 was identified as the most 
upregulated gene in liver tissues from patients with 
nonalcoholic fatty liver disease (NAFLD) compared 
with controls by transcriptomic profiling [19]. Con-
sidering that NAFLD can progress to nonalcoholic 
steatohepatitis, one of the important risk factors for 
HCC, the data indicate that liprin-β1 may participate 
in a spectrum of liver pathologies, which needs to be 
further ascertained. Taken together, these findings 
may help to improve biomarker-based HCC diagnosis 
and patient stratification.

Protein members of the liprin family have been 
implicated in several human malignancies. Howev-
er, evidence supports either a pro-oncogenic role or 
tumor-suppressive role in different cancer types. For 
example, liprin-α1, encoded by PPFIA1, is amplified 
in breast cancer and promotes tumor invasion and me-
tastasis [10,20,21], while in head and neck squamous 
cell carcinoma, liprin-α1 exhibits anti-invasive effects 
[22]. Together with our findings in liver cancers, these 
observations strongly suggest that liprin proteins, in-
cluding liprin-β1, contribute to human cancers in a 
tissue context-dependent manner. We propose that the 
functional divergence of liprin-β1 may be related to 
different interaction partners and subcellular localiza-
tion in different cell types. For example, endogenous 
liprin-α1 and liprin-β1 colocalize near the protrud-
ing cell front and promote cell invasion by positively 
regulating the organization of lamellipodia and inva-
dopodia [12,21,23], whereas liprin-β1 shows a diffuse 
distribution in the cytoplasm and plays inhibitory roles 
in the invasive behavior of cancer cells [10,24,25].

Aside from forming dimers with other liprin 
members, liprin-β1 has been shown to interact with 
metastasis-associated protein S100A4 and phospho-
binding protein 14-3-3ζ [26,27]. Consistent with the 
role of liprin-β1 in promoting cell motility and inva-
sion, both S100A4 and 14-3-3ζ have been shown to 
facilitate epithelial-to-mesenchymal transition (EMT) 
and cancer metastasis in HCC [28-31], raising the 
possibility that these two proteins may contribute to 
the oncogenic role of liprin-β1 in HCC. Recent pro-
teomics studies also demonstrated that liprin-β1 is 
present in several well-characterized structural com-
plexes, including the cadherin adhesome and micro-
tubule attachment complexes [32,33]. However, the 
biological functions of liprin-β1 in these signaling 
complexes have not been experimentally investigated. 
Further elucidation of the molecular mechanisms may 
explain the behavioral and functional variations of 
liprin-β1 in different cancer types.

Taken together, our results demonstrate an associ-
ation between elevated liprin-β1 expression and tumor 
malignancy in liver cancer, suggesting that liprin-β1 
might serve as a potential biomarker for the stratifi-
cation of HCC patients. Further studies on a larger 
patient population and investigation of liprin-β1’s bio-
logical role in HCC progression are highly warranted.

Table 1. Relationship between clinicopathological characteristics 
and liprin-β1 protein expression in hepatocellular carcinoma
Clinicopathological 
characteristic

Liprin-β1Low 

(n=19)
Liprin-β1High 

(n=29) P value

Age (years)
0.183

[median (range)] 50.5 (35-56) 52 (28-67)
Gender [n (%)]

0.895female 3 (15.8) 5 (17.2)
male 16 (84.2) 24 (82.8)
T stage [n (%)]

0.036T1 & 2 11 (57.9) 8 (27.6)
T3 & 4 8 (42.1) 21 (72.4)
N stage  [n (%)]   

0.051N0 15 (78.9) 28 (96.5)
N1 4 (21.1) 1 (3.5)
Grade [n (%)]

0.028 I & II 10 (55.6) 23 (85.2)
III 8 (44.4) 4 (14.8)
/ 1 2
Clinical stage [n (%)]

0.297 I & II 8 (42.1) 8 (27.6)
III & IVA 11 (57.9) 21 (72.4)

/ – not available.
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