Molecular characterization of mariner-like elements in Bruchus pisorum and Bruchus rufimanus (Coleoptera: Bruchidae)

Salma Djebbi, Wiem Ben Amara, Hanem Makni, Mohamed Makni, Maha Mezghani-Khemakhem

Abstract


Mariner-like elements (MLEs) are Class-II transposons that are widely present in diverse organisms and encode a D,D34D transposase motif. MLE sequences from two coleopteran species, Bruchus pisorum and B. rufimanus were obtained using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana subfamily as primer. The characterized elements were between 1073 and 1302 bp in length and are likely to be inactive, based on the presence of multiple stop codons and/or frameshifts. A single consensus of MLE was detected in B. pisorum and was named Bpmar1. This element exhibited several conserved amino acid blocks as well as the specific D,D(34)D signature. As for B. rufimanus, two MLE consensuses, designated Brmar1 and Brmar2, were isolated, both containing deletions overlapping the internal region of the transposase. Structural and phylogenetic analysis of these sequences suggested a relatively recent origin of Bpmar1 versus a more ancient invasion of Brmar1 and Brmar2 in their respective host genomes. Given that MLEs are potential mediators of insect resistance and have been used as vectors to transfer genes into host genomes, the MLEs characterized in this study will have valuable implications for selecting appropriate transposable elements in transgenesis.

https://doi.org/10.2298/ABS160407111D

Received: April 7, 2016; Revised: July 23, 2016; Accepted: July 26, 2016; Published online: November 9, 2016

How to cite this article: Djebbi S, Ben Amara W, Makni Hanem, Makni M, Mezghani-Khemakhem M. Molecular characterization of mariner-like elements in Bruchus pisorum and Bruchus rufimanus (Coleoptera: Bruchidae). Arch Biol Sci. 2017;69(2):353-60.


Keywords


Mariner-like element; Coleoptera; Bruchus pisorum; B. rufimanus; mauritiana subfamily

Full Text:

PDF

References


Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature.1980;(17);284:601-3.

Finnegan DJ. Transposable elements. Curr Opin Genet Dev. 1992;2(6):861-7.

Robertson HM. The mariner transposable element is widespread in insects. Nature. 1993;362(6417):241-5.

Haymer DS, Marsh JL. Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Dev Genet. 1986;6(4):281-91.

Jacobson JW, Medhora MM, Hartl DL. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA. 1986;83(22):8684-8.

Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR. What restricts the activity of mariner-like transposable elements.Trends Genet. 1997;13(5):197-201.

Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002;3(5):329-41.

Robertson HM, MacLeod EG. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol. 1993;2(3):125-39.

Bigot Y, Brillet B, Auge-Gouillou C. Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements. J Mol Biol. 2005;351(1):108-16.

Rouault JD, Casse N, Chenais B, Hua-Van A, Filee J, Capy P. Automatic classification within families of transposable elements: application to the mariner Family. Gene. 2009;448(2):227-32.

Maruyama K, Schoor KD, Hartl DL. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991;128(4):777-84.

Delaurière L, Chénais B, Hardivillier Y, Gauvry L, Casse N. Mariner transposons as genetic tools in vertebrate cells. Genetica. 2009;137(1):9-17.

Medhora M, Maruyama K, Hartl DL. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila.Genetics. 1991;128(2):311-8.

Barry EG, Witherspoon DJ, Lampe DJ. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics. 2004;166(2):823-33.

Munoz-Lopez M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T. Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol. 2008;382(3):567-72.

Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998;95(7):3748-51.

Atkinson PW, Pinkerton AC, O'Brochta DA. Genetic transformation systems in insects. Annu Rev Entomol. 2001;46:317-46.

Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2010;19(6):753-63.

Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. Insect Mol Biol. 1998;7(3):201-13.

Smith AM. Pea Weevil (Bruchus Pisorum L.) and Crop Loss - Implications for Management. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchel R, Yoshida T, editors. Bruchids and Legumes: Economics, Ecology and Coevolution: Proceedings of the Second International Symposium on Bruchids and Legumes (ISBL-2);1989Sep 6-9; Okayama,Japan. Dordrecht: Springer Netherlands; 1990. p. 105-14.

Clement SL, Wightman JA, Hardie DC, Bailey P, Baker G, McDonald G. Opportunities for integrated management of insect pests of grain legumes. In: Knight R, editor. Linking Research and Marketing Opportunities for Pulses in the 21st Century: Proceedings of the Third International Food Legumes Research Conference. Dordrecht: Springer Netherlands; 2000. p. 467-80. (Current plant science and biotechnology in agriculture; vol. 34).

Oliveira SG, Cabral-de-Mello DC, Moura RC, Martins C. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans. Mol Cytogenet. 2013;6(1):54.

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaves tissue. Phytochem Bull. 1987;19:11-5.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294-9.

Mezghani-Khemakhem M, Ben Lazhar W, Bouktila D, Ben Slimen H, Makni H, Makni M. A rapid diagnostic technique of Bactrocera cucurbitae and Bactrocera zonata (Diptera: Tephritidae) for quarantine application. Pest Manag Sci. 2013;69(6):744-6.

Kharrat I, Mezghani M, Casse N, Denis F, Caruso A, Makni H, et al. Characterization of mariner-like transposons of the mauritiana Subfamily in seven tree aphid species. Genetica. 2015;143(1):63-72.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.

Narasimhan G, Bu C, Gao Y, Wang X, Xu N, Mathee K. Mining protein sequences for motifs. J Comp Biol. 2002;9(5):707-20.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol.2016;33:1870-4.

Robertson HM, Asplund ML. Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol. 1996;26(8-9):945-54.

Lampe DJ, Walden KK, Robertson HM. Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol. 2001;18(6):954-61.

Capy P, David JR, Hartl DL. Evolution of the transposable element mariner in the Drosophila melanogaster species group.Genetica. 1992;86(1-3):37-46.

Hua-Van A, Hericourt F, Capy P, Daboussi MJ, Langin T. Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum. Mol Gen Genet. 1998;259(4):354-62.

Torti C, Gomulski LM, Malacrida AR, Capy P, Gasperi G. Genetic and molecular investigations on the endogenous mobile elements of non-drosophilidfruitflies. Genetica. 1997;100(1-3):119-29.

Brunet F, Giraud T, Godin F, Capy P. Do deletions of Mos1-like elements occur randomly in the Drosophilidae family? J Mol Evol. 2002;54(2):227-34.

Capy P, Bazin C, Higuet D, Langin T. Dynamic and Evolution of Transposable Elements. Austin, Texas, USA: R.G. Landes Company; 1997.197 p.

Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990;62(3):515-25.

Luo GH, Wu M, Wang XF, Zhang W, Han ZJ. A new active piggyBac-like element in Aphis gossypii.Insect Sci. 2011;18(6):652-62.

Daniels SB, Chovnick A, Boussy IA. Distribution of hobo transposable elements in the genus Drosophila. Mol Biol Evol. 1990;7(6):589-606.

Coates CJ, Turney CL, Frommer M, O'Brochta DA, Warren WD, Atkinson PW. The transposable element mariner can excise in non-drosophilid insects. Mol Gen Genet. 1995;249(2):246-52.

Coates CJ, Turney CL, Frommer M, O'Brochta DA, Atkinson PW. Interplasmid transposition of the mariner transposable element in non-drosophilid insects.Molecular & General Genetics. 1997;253(6):728-33.

Green CL, Frommer M. The genome of the Queensland fruit fly Bactrocera tryoni contains multiple representatives of the mariner family of transposable elements. Insect Mol Biol. 2001;10(4):371-86.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 ARCHIVES OF BIOLOGICAL SCIENCES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.