ULTRATRACE ELEMENT CONTENTS IN RAT TISSUES: COMPARATIVE ANALYSIS OF SERUM AND HAIR AS INDICATIVE MATRICES OF THE TOTAL BODY BURDEN

Anatoly V. Skalny, Alexey A. Tinkov, Andrey A. Skalny, Yulia S. Medvedeva, Irina B. Alchinova, Olga P. Ajsuvakova, Mikhail Yu. Karganov, Alexandr A. Nikonorov

Abstract


The aim of this study was to investigate the distribution of ultratrace elements in rat tissues and to perform a comparative analysis of hair and serum as potential bioindicators of the total ultratrace element content. Thirty-six male Wistar rats were fed a standard chow containing 0.006±0.000, 0.001±0.000, 0.017±0.002, 0.382±0.031, 0.168±0.014, 3.211±0.134, 0.095±0.006, 0.000±0.000, 6.675±0.336, 15.327±0.564, 0.002±0.000, and 1.185±0.202 μg/g of silver (Ag), gold (Au), cesium (Cs), gallium (Ga), germanium (Ge), lanthanum (La), niobium (Nb), platinum (Pt), rubidium (Rb), titanium (Ti), thallium (Tl) and zirconium (Zr), respectively, from weaning to 3 months old. The ultratrace element content in the liver, kidney, muscle, heart, serum and hair was assessed using inductively coupled plasma mass spectrometry. The obtained data indicate that the highest concentrations of most of the studied elements (Ti, Zr, Ge, Nb, tungsten (W), La, uranium (U), Ag, Au, Pt) are in hair, whereas the lowest were observed in the serum. Statistical analysis revealed a significant association between concentrations in the hair and other tissues for Cs, Ti, Nb, Tl, La, U and Au. At the same time, serum Cs, Rb, Ti, Ge, Nb, W, Ga, Tl and La concentrations significantly correlated with the tissue content of the respective ultratrace elements. It can be concluded that hair may be used as a potential bioindicator for certain ultratrace element content in the mammalian organism.

 

Key words: ultratrace elements; inductively coupled plasma mass spectrometry; rats; hair; chow

 

Received: September 29, 2015; Revised: October 26, 2015; Accepted: October 30, 2015; Published online: June 6, 2016


Full Text:

PDF

References


Nriagu JO. A history of global metal pollution. Science. 1996;272(5259):223.

Graedel TE. On the future availability of the energy metals. Ann Rev Mater Res. 2011;41:323-35.

Moskalyk RR. Gallium: the backbone of the electronics industry. Miner Eng. 2003;16(10):921-9.

Moskalyk RR. Review of germanium processing worldwide. Miner Eng. 2004;17(3):393-402.

Beale PJ, Kelland LR, Judson IR. Section Review: Oncologic, Endocrine and Metabolic: Platinum agents in the treatment of cancer. Expert Opin Investig Drugs. 1996;5:681-93.

Balazic M, Kopac J, Jackson MJ, Ahmed W. Review: titanium and titanium alloy applications in medicine. Int J Nano Biomater. 2007;1(1):3-34.

Mikuš P, Melník M, Forgácsová A, Krajčiová D, Havránek E. Gallium compounds in nuclear medicine and oncology. Main Group Met Chem. 2014;37(3-4):53-65.

Czerczak S, Gromiec JP, Pałaszewska-Tkacz A, Świdwińska-Gajewska A. Nickel, Ruthenium, Rhodium, Palladium, Osmium, and Platinum. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 653-768.

Lansdown ABG. Silver and Gold. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 75-112.

LangÅrd S, Lison D. Chromium, Molybdenum, and Tungsten. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 565-606.

Malczewska-Toth B. Titanium, Zirconium, and Hafnium. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 427-474.

Repetto G, del Peso A. Gallium, Indium, and Thallium. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 257-354.

Rydzynski K, Pakulska D. Vanadium, Niobium, and Tantalum. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 511-564.

Budnik L, Baur X. The assessment of environmental and occupational exposure to hazardous substances by biomonitoring. Dtsch Arztebl Int. 2009;106(6):91.

Sexton K, Needham L, Pirkle J. Human Biomonitoring of Environmental Chemicals Measuring chemicals in human tissues is the “gold standard” for assessing people’s exposure to pollution. Am Sci. 2004;92:38-45.

Smolders R, Schramm KW, Nickmilder M, Schoeters G. Applicability of non-invasively collected matrices for human biomonitoring. Environ Health. 2009;8(1):8.

Esteban M, Castaño A. Non-invasive matrices in human biomonitoring: a review. Environ Int. 2009;35(2):438-49.

Kempson IM, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status. Chem Soc Rev. 2011;40(7):3915-40.

Chojnacka K, Zielińska A, Górecka H, Dobrzański Z, Górecki H. Reference values for hair minerals of Polish students. Environ Toxicol Phar. 2010;29(3):314-9.

Zhao LJ, Ren T, Zhong RG. Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling. Anal Lett. 2012;45(16):2467-81.

Hood SL, Comar CL. Metabolism of cesium-137 in rats and farm animals. Arch Biochem Biophys. 1953;45(2):423-33.

Inaba J, Matsusaka N, Ichikawa R. Whole-body retention and tissue distribution of cesium-134 in new-born, young and adult rats. J Radiat Res. 1967;8(3-4):132-140.

Olsson KA, Söremark R, Wing KR. Uptake and Distribution of Rubidium‐86 and Potassium‐43 in Mice and Rats—an Autoradiographic Study. Acta Physiol Scand. 1969;77(3):322-32.

Emsley J. The elements. Oxford: Clarendon press; 1989. 264 p.

Cotton AF, Wilkinson G, Bochmann M, Murillo CA. Advanced inorganic chemistry. Chichester: Wiley; 1999.

Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151-7.

Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, de Jong WH ae al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014;11(30):b6.

Schroeder HA, Mitchener M, Nason AP. Zirconium, niobium, antimony, vanadium and lead in rats: life term studies. J Nutr. 1970;100:59-68.

Schroeder HA, Kanisawa M, Frost DV, Mitchener M. Germanium, tin and arsenic in rats: Effects on growth, survival, pathological lesions and life span. J Nutr. 1968;96(1):37-45.

Lin CH, Chen TJ, Hsieh YL, Jiang SJ, Chen SS. Kinetics of germanium dioxide in rats. Toxicology. 1999;132(2):147-53.

Kobayashi A, Ogra Y. Metabolism of tellurium, antimony and germanium simultaneously administered to rats. J Toxicol Sci. 2009;34(3):295-303.

Radcliffe PM, Leavens TL, Wagner DJ, Olabisi AO, Struve MF, Wong BA, Dorman DC. Pharmacokinetics of radiolabeled tungsten (188W) in male Sprague-Dawley rats following acute sodium tungstate inhalation. Inhal Toxicol. 2010;22(1):69-76.

Kinard FW, Aull JC. Distribution of tungsten in the rat following ingestion of tungsten compounds. J Pharmacol Exp Ther. 1945;83(1):53-5.

Buettner KM, Valentine AM. Bioinorganic chemistry of titanium. Chem rev. 2011;112(3):1863-1881.

Chilton HM, Witcofski RL, Heise CM. Differences in gallium-67 tissue distribution in male and female mice. J Nucl Med. 1981;22(5):478-9.

Leung KM, Ooi VEC. Studies on thallium toxicity, its tissue distribution and histopathological effects in rats. Chemosphere. 2000;41(1):155-9.

Sabbioni E, Gregotti C, Edel J, Marafante E, Di Nucci A, Manzo L. Organ/tissue disposition of thallium in pregnant rats. In: New Toxicology for Old. Berlin, Heidelberg: Springer; 1982. p. 225-30.

Rabinowitz JL, Fernandez‐Gavarron F, Brand JG. Tissue uptake and intracellular distribution of 140‐La after oral intake by the rat. J Toxicol Env Heal A. 1988;24(2):229-35.

Pellmar TC, Fuciarelli AF, Ejnik JW, Hamilton M, Hogan J, Strocko S, Emond C, Mottaz HM, Landauer MR. Distribution of uranium in rats implanted with depleted uranium pellets. Toxicol Sci. 1999;49(1):29-39.

Zhu G, Tan M, Li Y, Xiang X, Hu H, Zhao S. Accumulation and distribution of uranium in rats after implantation with depleted uranium fragments. J Radiat Res. 2009;50(3):183-92.

Enyedy ÉA, Dömötör O, Bali K, Hetényi A, Tuccinardi T, Keppler BK. Interaction of the anticancer gallium (III) complexes of 8-hydroxyquinoline and maltol with human serum proteins. JBIC J Biol Inorg Chem. 2014;20(1):77-88.

Chitambar CR, Wereley JP. Resistance to the antitumor agent gallium nitrate in human leukemic cells is associated with decreased gallium/iron uptake, increased activity of iron regulatory protein-1, and decreased ferritin production. J Biol Chem. 1997;272(18):12151-7.

van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8): 7427-42.

Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8(1):18.

Fraga S, Brandão A, Soares ME, Morais T, Duarte JA, Pereira L, Soares L, Neves C, Pereira E, Bastos Mde L, Carmo H. Short-and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomed-Nanotechnol. 2014;10(8):1757-66.

Sova P, Chladek J, Zak F, Mistr A, Kroutil A, Semerad M, Slovak Z. Pharmacokinetics and tissue distribution of platinum in rats following single and multiple oral doses of LA-12 [(OC-6-43)-bis (acetato)(1-adamantylamine) amminedichloroplatinum (IV)]. Int J Pharm. 2005;288(1):123-9.

Figgis BN, Lewis J, Lewis J, Wilkins RG. Modern coordination chemistry. New York: Interscience; 1960.

Bell RA, Kramer JR. Structural chemistry and geochemistry of silver‐sulfur compounds: Critical review. Environ Toxicol Chem. 1999;18(1):9-22.

Stewart JH, Macintosh D, Allen J, McCarthy J. Germanium, Tin, and Copper. In: Bingham E, Cohrssen B, editors. Patty’s Toxicology. 6th ed. New York: John Wiley and Sons Ltd; 2012. p. 355-80.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 ARCHIVES OF BIOLOGICAL SCIENCES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.