Exploring microplastic pollution in the pristine Ghar-e-Tangi Cave: first evidence from Pakistan’s subterranean ecosystem

Authors

DOI:

https://doi.org/10.2298/ABS241122040L

Keywords:

Microplastic pollution, Cave environments, Remote ecosystems, Input pathways

Abstract

Paper description:

  • Microplastic pollution has been detected in marine and terrestrial ecosystems. Studies on the accumulation of microplastics in subterranean environments like caves are limited.
  • This study examined the distribution and characteristics of microplastics in a subterranean ecosystem, a remote cave in Pakistan. Sediments in the cave were analyzed by microscopy and Fourier transform infrared spectroscopy (FTIR).
  • A significant concentration gradient of microplastics from the entrance to deeper sections was found. Microplastics with diverse colors, shapes, sizes, and polymer types were detected, suggesting multiple sources and input pathways.
  • These findings underscore the pervasive nature of microplastics even in isolated environments.

Abstract: Microplastics (MPs) are a pervasive environmental pollutant, yet their presence in subterranean environments, particularly in remote locations, remains understudied. This study quantifies the abundance, distribution, and characteristics of MPs in the sediments of Ghar-e-Tangi, an isolated cave in Balochistan, Pakistan, and explores their potential input pathways. Triplicate sediment samples were collected from three distinct sites along a gradient from entrance to deeper sections. MPs were extracted and analyzed for their number, color, size, and shape using microscopy, while MPs ≥ 1 mm were characterized via Fourier transform infrared spectroscopy (FTIR). Significant differences were observed in the distribution of MP by shape (P=0.004), color (P=0.002), and size (P=0.005), as well as across the sites (P=0.001–0.041). MP abundance decreased significantly from the entrance to deeper sections (Site A=99 MPs/kg, Site B=49 MPs/kg, Site C=37 MPs/kg, P=0.001). Transparent MPs were predominant (38.4%, 23.67±10.97), along with eight identified colors. Of the five shapes identified, fragments were the most prevalent (36.8%, 22.67±11.72). MPs measuring >3-5 mm constituted the largest proportion (45.4%, 28.0±14.42). The observed gradient suggests surface runoff and atmospheric deposition as primary input pathways. These findings align with global studies, highlighting the pervasive nature of MPs, even in remote environments such as the Ghar-e-Tangi cave.

Downloads

References

Steffen W, Crutzen PJ, McNeill JR. The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio. 2011;36(8):614-21. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2

Meybeck M. The global change of continental aquatic systems: Dominant impacts of human activities. Water Sci Technol. 2004;49(7):73-83. https://doi.org/10.2166/wst.2004.0420

Galloway TS, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol. 2017;1(5):0116. https://doi.org/10.1038/s41559-017-0116

Yang Y, Tang L, Tan X, Yu Q. Study on the degradation and plasticizing effects of the new environmentally-friendly polymer material: Poly (lactic acid). J Appl Polym Sci. 2011;122(5):2707-13.

Statista. Annual production of plastics worldwide from 1950 to 2023[Internet]. 2023 [cited 2025 Jan 21]. Available from: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

Irfan M, Nawaz SM, Shabbir MS, Alfarhan AH. Microplastic contamination in freshwater ecosystems: An emerging threat to environmental sustainability. Environ Sci Pollut Res Int. 2020;27(30):37561-74.

Masura J, Baker J, Foster G, Arthur C. Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments Silver Spring, Maryland: NOAA Technical Memorandum NOS-OR&R-48 ; 2015. 31 p.

Zhang H, Wang J, Zhou B, Peng S, Zhao M. Microplastics in the environment: Sources, distribution, and ecological effects. Environ Sci Technol. 2020;54(7):3756-71.

Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J Geophys Res Oceans. 2020;125(1):e2018JC014719. https://doi.org/10.1029/2018JC014719

Rillig MC, Lehmann A, Ryo M, Bergmann J. Shaping up: Toward considering the shape and form of pollutants. Environ Sci Technol. 2021;55(9):4453-5.

Zhu Y, Yang Z, Xu Q, Guo X, Zhang L. Effects of microplastics on soil microbial communities and enzyme activities: A field study. J Hazard Mater. 2022;422:126843.

Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part Fibre Toxicol. 2021;18(1):20. https://doi.org/10.1186/s12989-020-00387-7

Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2022;9(1):1-12.

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768-71. https://doi.org/10.1126/science.1260352

Lebreton LC, Van Der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. River plastic emissions to the world's oceans. Nature communications. 2017;8(1):15611. https://doi.org/10.1038/ncomms15611

Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol. 2016;50(20):10777-9. https://doi.org/10.1021/acs.est.6b04140

Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127-41. https://doi.org/10.1016/j.scitotenv.2017.01.190

United Nations Environment Programme. Exploring the potential for adopting alternative materials to reduce marine plastic litter [Internet]. United Nations; 2018 [cited 2025 Jan 21]. Available from: https://apps1.unep.org/resolutions/uploads/unep-aheg-2018-1-inf-6_alternatives_material_rev1.pdf

Corradini F, Casado F, Leiva V, Huerta-Lwanga E, Geissen V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci Total Environ. 2021;752:141917. https://doi.org/10.1016/j.scitotenv.2020.141917

Huang Y, Liu Q, Jia W, Yan C, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096. https://doi.org/10.1016/j.envpol.2020.114096

Panno SV, Kelly WR, Scott J, Zheng W, McNeish RE, Holm N, Hoellein TJ, Baranski EL. Microplastic contamination in karst groundwater systems. Groundwater. 2019;57(2):189-96. https://doi.org/10.1111/gwat.12862

Zhang Y, Liang J, Qiu L, Li L. The occurrence and removal efficiency of microplastics in a municipal wastewater treatment plant in Guangzhou, China. Environ Pollut. 2021;263:114573.

Bergmann M, Collard F, Fabres J, Gabrielsen GW, Provencher JF, Rochman CM, van Sebille E, Tekman MB.Plastics pollution in the Arctic. Nat Rev Earth Environ. 2022;3(5):323-37. https://doi.org/10.1038/s43017-022-00279-8

Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T, Bergmann M, Hehemann L, Gerdts G. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Commun. 2018;9(1):1505. https://doi.org/10.1038/s41467-018-03825-5

Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE. Examination of the ocean as a source for atmospheric microplastics. PLoS One. 2021;16(3):e0232746. https://doi.org/10.1371/journal.pone.0232746

Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. https://doi.org/10.1016/j.envint.2022.107199

Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2021;774:145874. https://doi.org/10.1016/j.scitotenv.2022.154907

Balestra V, Galbiati M, Lapadula S, Zampieri V, Cassarino F, Gajdošová M, Barzaghi B, Manenti R, Ficetola GF, Bellopede R. Microplastic pollution calls for urgent investigations in stygobiont habitats: A case study from Classical karst. J Environ Manage. 2024;356:120672. https://doi.org/10.1016/j.jenvman.2024.120672

Balestra VA, Drudi LI, Bellopede RO. The invisible environmental impact of tourism in show caves: microplastic pollution in three Italian show caves. In: 18th International Conference on Environmental Science and Technology; 2023 Aug 30 - Sep 2; Athens, Greece. CEST; 2023. https://doi.org/10.30955/gnc2023.00377

Balestra V, Bellopede R. Microplastic pollution in show cave sediments: First evidence and detection technique. Environ Pollut. 2022;292:118261. https://doi.org/10.1016/j.envpol.2021.118261

Piccardo M, Bevilacqua S. Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves. Environments. 2024;11(11):238. https://doi.org/10.3390/environments11110238

Romano E, Bergamin L, Di Bella L, Baini M, Berto D, D'Ambrosi A, Di Fazio M, Galli M, Medeghini L, Panti C, Provenzani C. First record of microplastic in the environmental matrices of a Mediterranean marine cave (Bue Marino, Sardinia, Italy). Mar Pollut Bull. 2023;186:114452. https://doi.org/10.1016/j.marpolbul.2022.114452

Balestra V, Galbiati M, Lapadula S, Barzaghi B, Manenti R, Ficetola GF, Bellopede R. The problem of anthropogenic microfibres in karst systems: Assessment of water and submerged sediments. Chemosphere. 2024;363:142811. https://doi.org/10.1016/j.chemosphere.2024.142811

Hasenmueller EA, Baraza T, Hernandez NF, Finegan CR. Cave sediment sequesters anthropogenic microparticles (including microplastics and modified cellulose) in subsurface environments. Sci Total Environ. 2023;893:164690. https://doi.org/10.1016/j.scitotenv.2023.164690

Valentic L, Kozel P, Pipan T. Microplastic pollution in vulnerable karst environments: case study from the Slovenian classical karst region. Acta Carsol. 2022;51(1):79-92. https://doi.org/10.3986/ac.v51i1.10597

Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA. Microplastics in the Antarctic marine system: an emerging area of research. Sci Total Environ. 2017;598:220-7. https://doi.org/10.1016/j.scitotenv.2017.03.283

Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth Future. 2014;2(6):315-20. https://doi.org/10.1002/2014EF000240

Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019;5(8):eaax1157. https://doi.org/10.1126/sciadv.aax1157

Ambrosini R, Azzoni RS, Pittino F, Diolaiuti G, Franzetti A, Parolini M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ Pollut. 2019;253:297-301. https://doi.org/10.1016/j.envpol.2019.07.005

Zhang K, Xiong X, Hu H, Wu C, Bi Y, Wu Y, Zhou B, Lam PK, Liu J. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environ Sci Technol. 2020;51(7):3794-802. https://doi.org/10.1021/acs.est.7b00369

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

Hartline NL, Bruce NJ, Karba SN, Ruff EO, Sonar SU, Holden PA. Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Sci Technol. 2016;50(21):11532-8. https://doi.org/10.1021/acs.est.6b03045

Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar Pollut Bull. 2016;104(1-2):290-3. https://doi.org/10.1016/j.marpolbul.2016.01.006

Koelmans AA, Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Environ Sci Technol. 2019;53(21):12300-11. https://doi.org/10.1016/j.watres.2019.02.054

Karlsson TM, Arneborg L, Broström G, Almroth BC, Gipperth L, Hassellöv M. The unaccountability case of plastic pellet pollution. Mar Pollut Bull. 2018;129(1):52-60. https://doi.org/10.1016/j.marpolbul.2018.01.041

Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification. Mar Pollut Bull. 2017;114(1):218-26. https://doi.org/10.1016/j.marpolbul.2016.09.004

Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J Geophys Res Oceans. 2020;125(1):e2018JC014719. https://doi.org/10.1029/2018JC014719

Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, Binet S, Galop D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12(5):339-44. https://doi.org/10.1038/s41561-019-0335-5

Downloads

Published

2025-04-29

How to Cite

1.
Luqman M, Awan UF, Arooj F, Khalid MA, Afzaal M, Shahid T, Niazi A, Yang H-H, Khan SH. Exploring microplastic pollution in the pristine Ghar-e-Tangi Cave: first evidence from Pakistan’s subterranean ecosystem. Arch Biol Sci [Internet]. 2025Apr.29 [cited 2025May17];77(1):15-2. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/10532

Issue

Section

Articles