The bioherbicidal potential of hemlock water extracts

Authors

DOI:

https://doi.org/10.2298/ABS241126001J

Keywords:

Conium maculatum, water extract, seed germination, early seedling growth, allelopathy

Abstract

Paper description:

  • Plant water extracts are used in agricultural research due to their environmentally friendly preparation and bioactive compounds that can be used in weed control.
  • Conium maculatum water extract (CmWE) cytotoxic effects on weed and one crop species were evaluated.
  • CmWE of dry leaves (50%) inhibited seed germination. CmWE of dry stems (50%) inhibited seed germination of media, A. retroflexus and A. artemisiifolia from 20% to 89%; germination of L. sativa was less affected (9%). CmWE of dry stems (5%) inhibited ragweed germination (45%); germination of Lactuca sativa was unaffected.
  • maculatum water extracts have natural herbicide potential.

Abstract: Studying plant species rich in bioactive compounds, including allelochemicals, could lead to the development of biodegradable and environmentally safe herbicides. In this study, a water extract of hemlock (Conium maculatum L.), known to be rich in alkaloids, was used to investigate its effects on the germination of Amaranthus retroflexus L., Ambrosia artemisiifolia L., Stellaria media (L.) Vill., and Lactuca sativa L., providing valuable insights into its phytotoxic properties. Among the C. maculatum water extracts (CmWEs) tested, that of dry leaves showed the strongest inhibitory effect on the germination of all species analyzed. The CmWE of dry leaves (50%) completely inhibited seed germination of all species tested. The CmWE of dry stems (50%) reduced seed germination in S. media, A. retroflexus, and A. artemisiifolia by 20% to 89%, whereas the germination of L. sativa was less affected (9%). In addition, a CmWE of dry stems (5%) selectively inhibited ragweed germination (45%), while the germination of Lactuca sativa was not significantly affected. The CmWE of dry leaves (20%) inhibited early root and shoot growth of S. media more effectively than suppressing seed germination. Moreover, the dry leaves and inflorescences of C. maculatum demonstrate strong allelopathic properties even after two years of storage, highlighting the long-term potential of C. maculatum as a source of natural herbicides.

Downloads

References

Chauhan BS. Grand challenges in weed management. Front Agron. 2020;1:3. https://doi.org/10.3389/fagro.2019.00003

Khamare Y, Chen J, Marble SC. Allelopathy and its application as a weed management tool: A review. Front Plant Sci. 2022;13:1034649. https://doi.org/10.3389/fpls.2022.1034649

Quasem JR, Foy CL. Weed allelopathy, its ecological impacts and future prospects. J Crop Prod. 2001;4(2):43–119. https://doi.org/10.1300/J144v04n02_02

Hierro JL, Callaway RM. The Ecological importance of allelopathy. Annu Rev Ecol Evol Syst. 2021;52(1):25–45. https://doi.org/10.1146/annurev-ecolsys-051120-030619

Sahrir MAS, Yusoff N, Azizan KA. Allelopathy activity under laboratory, greenhouse and field conditions: A review. AIMS Agric Food. 2022;8(1):78–104. https://doi.org/10.3934/agrfood.2023004

Holm L, Doll J, Holm E, Pancho J V, Herberger JP. World weeds: natural histories and distribution. John Wiley & Sons; 1997.

Vetter J. Poison hemlock (Conium maculatum L.). Food Chem Toxicol. 2004;42(9):1373–82. https://doi.org/10.1016/j.fct.2004.04.009

Meier P, Hotti H, Rischer H. Elicitation of furanocoumarins in poison hemlock (Conium maculatum L.) cell culture. Plant Cell Tissue Organ Cult. 2015;123(3):443–53. https://doi.org/10.1007/s11240-015-0847-7

Ahmad M, Alam SM. Conium maculatum: A review. J Pharmacogn Phytochem. 2018;7(5):621–9.

Nestorović M, Konstantinović B. Overview of the weed flora in the Serbia. Contemp Agric. 2011;60(1):215.

Chen H, Singh H, Bhardwaj N, Bhardwaj SK, Khatri M, Kim KH, Peng W. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities. Crit Rev Environ Sci Technol. 2022;52(3):395–435. https://doi.org/10.1080/10643389.2020.1823172

Zandavar H, Babazad A. Secondary Metabolites: Alkaloids and flavonoids in medicinal plants. IntechOpen. 2023;1–28. https://doi.org/10.5772/intechopen.108030

Green BT, Welch KD, Panter KE, Lee ST. Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem. Res. Toxicol. 2013; 26(8):1129-1138. https://doi.org/10.1021/tx400166f

Mutlu S, Atici Ö, Esim N, Mete E. Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta Physiol Plant. 2011;33(3):943–51. https://doi.org/10.1007/s11738-010-0626-3

Ma J, Xing G, Yang W, Ma L, Gao M, Wang Y, Han Y. Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecol Sin. 2012;32(1):50–6. http://dx.doi.org/10.1016/j.chnaes.2011.12.004

Vrbničanin S, Karadžić B, Dajić-Stevanović Z. Adventivne i invazivne korovske vrste na području Srbije. Acta Biol Jugoslav.-serija G: Acta Herbol. 2004;13(1):1-12.

Costea M, Weaver SE, Tardif FJ. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can J Plant Sci. 2004;84(2):631–68. https://doi.org/10.4141/P02-183

Assad R, Reshi ZA, Jan S, Rashid I. Biology of amaranths. Bot Rev. 2017;(83):382–436. https://doi.org/10.1007/s12229-017-9194-1

Božić D. Amaranthus retroflexus L. - štir obični. Acta Herbol. 2018;27(1):5-19. https://doi.org/10.5937/ActaHerb1801005B

Kordali S, Tazegul A, Cakir A. Phytotoxic effects of Nepeta meyeri Benth. extracts and essential oil on seed germinations and seedling growths of four weed species. Rec Nat Prod. 2015;9(3):404–18.

Slavnić Ž. Prilog flori našeg Podunavlja. Glasnik Biološke Sekcije. 1953;4-6:145-77.

Choi B, Song DY, Kim CG, Song BH, Woo SH, Lee C. Allelopathic effects of common ragweed (Ambrosia artemisiifolia var. elatior) on the germination and seedling growth of crops and weeds. J Weed Sci. 2010;30(1):34–42. https://doi.org/10.5660/KJWS.2010.30.1.034

Lehoczky E, Szabó R, Nelima MO, Nagy P, Béres I. Examination of common ragweed’s (Ambrosia artemisiifolia L.) allelopathic effect on some weed species. Commun Agric Appl Biol Sci. 2010;75(2):107–11.

Ognjenovic J, Milcic-Matic N, Smiljanic K, Vuckovic O, Burazer L, Popovic N, Stanic-Vucinic D, Cirkovic Velickovic T. Immunoproteomic characterization of Ambrosia artemisiifolia pollen allergens in canine atopic dermatitis. Vet Immunol Immunopathol. 2013;155:38–47. https://doi.org/10.1016/j.vetimm.2013.06.005

Božić D. Ambrosia artemisiifolia L. – ambrozija pelenasta. Acta Herbol. 2018;27(2):79–95.

Lepší M, Lepší P, Koutecký P, Lučanová M, Koutecká E, Kaplan Z. Stellaria ruderalis, a new species in the Stellaria media group from central Europe. Preslia. 2019;91(4):391–420. https://doi.org/10.23855/preslia.2019.391

Rice EL. Allelopathy — An overview. In: Cooper-Driver GA, Swain T, Conn EE, editors. Chemically mediated interactions between plants and other organisms. Recent Advances in Phytochemistry (19). Boston, Massachusetts, SAD: Springer; 1985. p. 81–105. https://doi.org/10.1007/978-1-4757-9658-2_4

Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;(6):1–16. https://doi.org/10.3389/fpls.2015.01020

López TA, Cid MS, Bianchini ML. Biochemistry of hemlock (Conium maculatum L.) alkaloids and their acute and chronic toxicity in livestock. A review. Toxicon. 1999;37(6):841–65. https://doi.org/10.1016/S0041-0101(98)00204-9

Al-Snafi AE. Pharmacology and toxicology of Conium maculatum - A review. Pharm Chem J. 2016;(3):136–42.

Corsi G, Biasci D. Secretory structures and localization of alkaloids in Conium maculatum L. (Apiaceae). Ann Bot. 1998;81(1):157–62. https://doi.org/10.1006/anbo.1997.0547

Di Napoli M, Varcamonti M, Basile A, Bruno M, Maggi F, Zanfardino A. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil. Nat Prod Res. 2019;33(23):3436–40. https://doi.org/10.1080/14786419.2018.1477151

Muro-Medina C V., García-Morales S, Caltempa AO, Tapia-Campos E, León-Morales JM. The potential of piperidine alkaloids-rich extracts from Prosopis spp. to combat plant pests and diseases. Int J Biochem Res Rev. 2022;31(1):20–38. https://doi.org/10.9734/ijbcrr%2F2022%2Fv31i130298

Scavo A, Restuccia A, Pandino G, Onofri A, Mauromicale G. Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some mediterranean weed species. Ital J Agron. 2018;13(2):119–25. https://doi.org/10.4081/ija.2018.1021

Yarnia M, Khorshidi Benam MB, Farajzadeh Memari Tabrizi E. Allelopathic effects of sorghum extracts on Amaranthus retroflexus seed germination and growth. J Food, Agric Environ. 2009;7(3–4):770–4.

Pannacci E, Masi M, Farneselli M, Tei F. Evaluation of mugwort (Artemisia vulgaris L.) aqueous extract as a potential bioherbicide to control Amaranthus retroflexus L. in maize. Agric. 2020;10(12):1–13. https://doi.org/10.3390/agriculture10120642

Šćepanović M, Sarić-Krsmanović M, Šoštarčić V, Brijačak E, Lakić J, Špirović Trifunović B, Gajić Umiljendić J, Radivojević Lj. Inhibitory effects of Brassicaceae cover crop on Ambrosia artemisiifolia germination and early growth. Plants. 2021;10(4). https://doi.org/10.3390/plants10040794

Kazinczi G, Béres I, Onofri A, Nádasy E, Takács A, Horváth J, et al. Allelopathic effects of plant extracts on common ragweed (Ambrosia artemisiifolia L.). J Plant Dis Proctection. 2008;(21):335–9.

Mahmoodzadeh H, Ghasemi M, Zanganeh H. Allelopathic effect of medicinal plant Cannabis sativa L. on Lactuca sativa L. seed germination. Acta Agric Slov. 2015;105(2):233–9. http://dx.doi.org/10.14720/aas.2015.105.2.06

Sbai H, Zribi I, DellaGreca M, Haouala R. Bioguided fractionation and isolation of phytotoxic compounds from Apium graveolens L. aerial parts (Apiaceae). South African J Bot. 2017;108:423–30. https://doi.org/10.1016/j.sajb.2016.09.011

Nestorović Živković J, Dmitrović S, Jovanović V, Živković S, Božić D, Aničić N, Mišić D. Allelopathic potential of essential oil of Nepeta rtanjansis. Allelopath J. 2016;37(2):207–19.

Prijović M, Nikolić B, Dragićević I, Nestorović Živković J, Dmitrović S, Giba Z, Jovanović, V. Water emulsion of the essential oil of Nepeta rtanjensis Diklić et Milojević: potential use as a bioherbicide. Arch Biol Sci. 2024;76(1):5–14. https://doi.org/10.2298/ABS231107041P

Sturm DJ, Kunz C, Gerhards R. Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L. Crop Prot. 2016;90:125–31. https://doi.org/10.1016/j.cropro.2016.08.032

Jovanović V, Galović M, Nikolić B, Dragićević I, Waisi H, Giba Z. The effects of water extracts of Xeranthemum cylindraceum Sibth. et Sm. on seed germination of three weed species. In: Kovačević D, editor. Proceedings of the 10th International Scientific Agriculture Symposium "Agrosym 2019"; 2019 Oct 3-6; Jahorina, Bosnia and Herzegovina. East Sarajevo: Faculty of Agriculture: 2019. p. 997–1003.

Downloads

Published

2025-04-29

How to Cite

1.
Jovanović VD, Stanojević SR, Dmitrović SS, Nestorović Živković JM, Nikolić BR, Dragićević I Č., Giba Z. The bioherbicidal potential of hemlock water extracts. Arch Biol Sci [Internet]. 2025Apr.29 [cited 2025May17];77(1):5-14. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/10541

Issue

Section

Articles

Most read articles by the same author(s)