The role of ADAM10 in the prediction of neoadjuvant chemoradiotherapy response in patients with locally advanced rectal cancer
Keywords:
ADAM10, locally advanced rectal cancer, LARC, nCRT, RT-qPCR, ELISAAbstract
Paper description:
- Protein ADAM10 is implicated in colorectal cancer development. This study evaluates ADAM10 expression and serum levels in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy (nCRT).
- Pre-nCRT samples from 23 LARC patients were analyzed for ADAM10 expression using RT-qPCR and serum concentrations by ELISA, with correlation to nCRT response.
- Tumor tissue had significantly higher ADAM10 expression (83% of patients) than healthy tissue. Serum levels varied widely and did not correlate with tissue expression or nCRT response.
- ADAM10’s involvement in rectal cancer biology is confirmed, warranting further research on its substrates and signaling pathways.
Abstract: Protease ADAM10, a member of the A disintegrin and metalloproteinase protein family, plays a role in cytokine/growth factor release, the shedding of receptor molecules from the membrane, and intracellular signaling. ADAM10 is implicated in colorectal cancer development and progression and has been identified as a potential predictive biomarker in this disease. This study evaluates ADAM10 expression in tumor and non-tumor tissue and ADAM10 serum concentrations in patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT). The study included samples taken before nCRT from 23 histopathologically confirmed LARC patients. Expression of ADAM10 was assessed using RT-qPCR, while ELISA measured ADAM10 concentrations in the serum, and the correlation of the results with nCRT response was evaluated. We found statistically significantly higher expression of ADAM10 in tumor tissue compared to healthy tissue in 83% of LARC patients. Serum concentrations of ADAM10 varied widely (66.6-1119.1 pg/mL) and did not correlate with tissue expression levels. Neither the tissue expression level nor ADAM10 serum concentrations predicted the response to nCRT. Our results confirm the involvement of ADAM10 in rectal cancer initiation and warrant further research on ADAM10 substrates, signaling pathways involved in its activity, and its potential as a therapeutic target.
Downloads
References
Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2009;29(5):258–89. https://doi.org/10.1016/j.mam.2008.08.001
Howard L, Glynn P. Membrane-associated metalloproteinase recognized by characteristic cleavage of myelin basic protein: Assay and isolation. Methods Enzymol. 1995;248(C):388–95. https://doi.org/10.1016/0076-6879(95)48025-0
Tosetti F, Alessio M, Poggi A, Zocchi MR. Adam10 site-dependent biology: Keeping control of a pervasive protease. Int J Mol Sci. 2021;22(9). https://doi.org/10.3390/ijms22094969
Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S. A disintegrin and metalloproteinase-12 (ADAM12): Function, roles in disease progression, and clinical implications. Biochim Biophys Acta Gen Subj. 2013;1830(10):4445–55. https://doi.org/10.1016/j.bbagen.2013.05.011
Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci. 2020;21(20):1–22. https://doi.org/10.3390/IJMS21207790
Sisto M, Ribatti D, Lisi S. Adam 17 and epithelial-to-mesenchymal transition: The evolving story and its link to fibrosis and cancer. J Clin Med. 2021;10(15). https://doi.org/10.3390/jcm10153373
Yamagata A, Fukai S. Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22. Cellular and Molecular Life Sciences. 2020;77(2):267–74. https://doi.org/10.1007/s00018-019-03269-0
Hubeau C, Rocks N, Cataldo D. ADAM28: Another ambivalent protease in cancer. Cancer Lett. 2020;494:18–26. https://doi.org/10.1016/j.canlet.2020.08.031
Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochim Biophys Acta Mol Cell Res. 2017;1864(11):2228–39. https://doi.org/10.1016/j.bbamcr.2017.07.011
Schumacher N, Rose-John S, Schmidt-Arras D. ADAM-Mediated Signalling Pathways in Gastrointestinal Cancer Formation. Int J Mol Sci. 2020;21(14):1–19. https://doi.org/10.3390/IJMS21145133
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett. 2022;596(5):534-56. https://doi.org/10.1002/1873-3468.14225
Meyer-Schwesinger C, Seipold L, Saftig P. Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. Biochim Biophys Acta Mol Cell Res. 2022;1869(3). https://doi.org/10.1016/j.bbamcr.2021.119165
Cirillo N, Prime SS. A scoping review of the role of metalloproteinases in the pathogenesis of autoimmune pemphigus and pemphigoid. Biomolecules. 2021;11(10). https://doi.org/10.3390/biom11101506
Peron R, Vatanabe IP, Manzine PR, Camins A, Cominetti MR. Alpha-secretase ADAM10 regulation: Insights into Alzheimer’s disease treatment. Pharmaceuticals. 2018;11(1). https://doi.org/10.3390/ph11010012
Miller MA, Sullivan RJ, Lauffenburger DA. Molecular pathways: Receptor ectodomain shedding in treatment, resistance, and monitoring of cancer. Clinical Cancer Research. 2017;23(3):623–9. https://doi.org/10.1158/1078-0432.CCR-16-0869
Jones JC, Rustagi S, Dempsey PJ. ADAM Proteases and Gastrointestinal Function. Annu Rev Physiol. 2016;78:243–76. https://doi.org/10.1146/annurev-physiol-021014-071720
Hirao T, Nanba D, Tanaka M, Ishiguro H, Kinugasa Y, Doki Y, Yano M, Matsuura N, Monden M, Higashiyama S. Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp Cell Res. 2006;312(3):331–9. https://doi.org/10.1016/j.yexcr.2005.10.032
Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T, Barany F, Paty P, Notterman D, Domany E, Ben-Ze’ev A. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res. 2007;67(16):7703–12. https://doi.org/10.1158/0008-5472.CAN-07-0991
Duffy MJ, McKiernan E, O’Donovan N, McGowan PM. Role of ADAMs in cancer formation and progression. Clinical Cancer Research. 2009;15(4):1140–4. https://doi.org/10.1158/1078-0432.CCR-08-1585
Murphy G. The ADAMs: Signalling scissors in the tumour microenvironment. Nat Rev Cancer. 2008;8(12):929–41. https://doi.org/10.1038/nrc2459
Walkiewicz K, Kozieł P, Bednarczyk M, Błazelonis A, Mazurek U, Muc-Wierzgoń M. Expression of Migration-Related Genes in Human Colorectal Cancer and Activity of a Disintegrin and Metalloproteinase 17. Biomed Res Int. 2016;2016. https://doi.org/10.1155/2016/8208904
Nowakowska-Zajdel E, Mazurek U, Wierzgoń J, Kokot T, Fatyga E, Ziółko E, Klakla K, Błazelonis A, Waniczek D, Głogowski, Kozowicz A, Niedworok E, Muc-Wierzgoń M. Expression of ADAM28 and IGFBP-3 genes in patients with colorectal cancer - A preliminary report. Int J Immunopathol Pharmacol. 2013;26(1):223–8. https://doi.org/10.1177/039463201302600122
Walkiewicz K, Strzelczyk J, Waniczek D, Biernacki K, Muc-Wierzgoń M, Copija A, Nowakowska-Zajdel E. Adamalysines as biomarkers and a potential target of therapy in colorectal cancer patients: Preliminary results. Dis Markers. 2019;2019. https://doi.org/10.1155/2019/5035234
Paschke S, Jafarov S, Staib L, Kreuser ED, Maulbecker-Armstrong C, Roitman M, Holm T, Harris CC, Link KH, Kornmann M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int J Mol Sci. 2018;19(9):2577. https://doi.org/10.3390/IJMS19092577
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. https://doi.org/10.3322/CAAC.21820
Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G. Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review. Eur J Surg Oncol. 2024;109463 https://doi.org/10.1016/J.EJSO.2024.109463
2017 European Society of Coloproctology (ESCP) collaborating group. Evaluating the incidence of pathological complete response in current international rectal cancer practice: the barriers to widespread safe deferral of surgery. Colorectal Dis. 2018;20:58–68. https://doi.org/10.1111/CODI.14361
Byun HK, Koom WS. A practical review of watch-and-wait approach in rectal cancer. Radiat Oncol J. 2023;41(1):4–11. https://doi.org/10.3857/ROJ.2023.00038
Babic T, Lygirou V, Rosic J, Miladinov M, Rom AD, Baira E, Stroggilos R, Pappa E, Zoidakis J, Krivokapic Z, Nikolic A. Pilot proteomic study of locally advanced rectal cancer before and after neoadjuvant chemoradiotherapy indicates high metabolic activity in non-responders’ tumor tissue. Proteomics Clin Appl. 2023;17(1):e2100116. https://doi.org/10.1002/PRCA.202100116
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675-8. https://doi.org/10.1038/S41587-020-0546-8
Mullooly M, McGowan PM, Kennedy SA, Madden SF, Crown J, O’Donovan N, Duffy MJ. ADAM10: a new player in breast cancer progression? Br J Cancer. 2015;113(6):945-51. https://doi.org/10.1038/BJC.2015.288
Yuan Q, Yu H, Chen J, Song X, Sun L. ADAM10 promotes cell growth, migration, and invasion in osteosarcoma via regulating E-cadherin/β-catenin signaling pathway and is regulated by miR-122-5p. Cancer Cell Int. 2020;20(1):1-12. https://doi.org/10.1186/s12935-020-01174-2
Zhang W, Yang L, Li M, Zhang L, Cheng J, El-Far AH, Xu Y, Fu J. ADAM10 is a key player in the diagnosis, prognosis and metastasis of non-small cell lung cancer (NSCLC). J Cancer. 2025;16(5):1736-46. https://doi.org/10.7150/JCA.107236
Rossello A, Steinle A, Poggi A, Zocchi MR. Editorial: ADAM10 in Cancer Immunology and Autoimmunity: More Than a Simple Biochemical Scissor. Front Immunol. 2020;11:553393. https://doi.org/10.3389/FIMMU.2020.01483
Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, Mytilineos J, Kalthoff H, Janssen O, Oberg HH, Kabelitz D. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133(7):1557-66. https://doi.org/10.1002/IJC.28174
Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A, Ravetti JL, Boero S, Musso A, Poggi A. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood. 2012;119(6):1479-89. https://doi.org/10.1182/BLOOD-2011-07-370841
Liu S, Zhang W, Liu K, Ji B, Wang G. Silencing ADAM10 inhibits the in vitro and in vivo growth of hepatocellular carcinoma cancer cells. Mol Med Rep. 2015;11(1):597-602. https://doi.org/10.3892/MMR.2014.2652
Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K, Dimitrov DS, Nikolov DB. Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Biomed Pharmacother. 2023;161:114494. https://doi.org/10.1016/J.BIOPHA.2023.114494
Tsai YH, Vandussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC, Dempsey PJ. ADAM10 regulates notch function in intestinal stem cells of mice. Gastroenterology. 2014;147(4):822-834.e13. https://doi.org/10.1053/j.gastro.2014.07.003
Bigas A, Espinosa L. The multiple usages of Notch signaling in development, cell differentiation and cancer. Curr Opin Cell Biol; 2018;55:1-7. https://doi.org/10.1016/j.ceb.2018.06.010
Hartmann D, De Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Illert AL, Von Figura K, Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum Mol Genet. 2002;11(21):2615–24. https://doi.org/10.1093/hmg/11.21.2615
Knösel T, Emde A, Schlüns K, Chen Y, Jürchott K, Krause M, Dietel M, Petersen I. Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia. 2005;7(8):741-7. https://doi.org/10.1593/neo.05178
Sikora-Skrabaka M, Walkiewicz KW, Nowakowska-Zajdel E, Waniczek D, Strzelczyk JK. ADAM10 and ADAM17 as Biomarkers Linked to Inflammation, Metabolic Disorders and Colorectal Cancer. Curr Issues Mol Biol. 2022;44(10):4517-27. https://doi.org/10.3390/cimb44100309
Yoshimura T, Tomita T, Dixon MF, Axon ATR, Robinson PA, Crabtree JE. ADAMs (A disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. Journal of Infectious Diseases. 2002;185(3):332-40. https://doi.org/10.1086/338191
Wang YY, Ye ZY, Li L, Zhao ZS, Shao QS, Tao HQ. ADAM 10 is associated with gastric cancer progression and prognosis of patients. J Surg Oncol. 2011;103(2):116-23. https://doi.org/10.1002/jso.21781
Walkiewicz K, Nowakowska-Zajdel E, Strzelczyk J, Dzięgielewska-Gęsiak S, Muc-Wierzgoń M. Serum levels of ADAM10, ADAM12, ADAM17 AND ADAM28 in colorectal cancer patients. J Biol Regul Homeost Agents. 2017;31(4):929-34.
De Oliveira TR, Erbereli CR, Manzine PR, Magalhães TNC, Balthazar MLF, Cominetti MR, Faria RC. Early Diagnosis of Alzheimer’s Disease in Blood Using a Disposable Electrochemical Microfluidic Platform. ACS Sens. 2020;5(4):1010-9. https://doi.org/10.1021/acssensors.9b02463
Feng MJ, Wang W, Zhang XF, Che FF, Yang J, Ning W Bin, Gao W, Chen J. Plasma ADAM-10 levels and functional outcome of acute primary basal ganglia hemorrhage. Clinica Chimica Acta. 2022;524:18-24. https://doi.org/10.1016/j.cca.2021.11.026
Lee ACH, Lam JKY, Shiu SWM, Wong Y, Betteridge DJ, Tan KCB. Serum level of soluble receptor for advanced glycation end products is associated with a disintegrin and metalloproteinase 10 in type 1 diabetes. PLoS One. 2015;10(9). https://doi.org/10.1371/journal.pone.0137330
VanSchaeybroeck S, Kalimutho M, Dunne PD, Carson R, Allen W, Jithesh P V., Redmond KL, Sasazuki T, Shirasawa S, Blayney J, Michieli P, Fenning C, Lenz HJ, Lawler M, Longley DB, Johnston PG. ADAM17-Dependent c-MET-STAT3 Signaling Mediates Resistance to MEK Inhibitors in KRAS Mutant Colorectal Cancer. Cell Rep. 2014;7(6):1940-55. https://doi.org/10.1016/j.celrep.2014.05.032
Yang L, Bhattacharya A, Li Y, Sexton S, Ling X, Li F, Zhang Y. Depleting receptor tyrosine kinases EGFR and HER2 overcomes resistance to EGFR inhibitors in colorectal cancer. Journal of Experimental and Clinical Cancer Research. 2022;41(1). https://doi.org/10.1186/s13046-022-02389-z
Carloni V, Mazzocca A, Mello T, Galli A, Capaccioli S. Cell fusion promotes chemoresistance in metastatic colon carcinoma. Oncogene. 2013;32(21):2649-60. https://doi.org/10.1038/onc.2012.268
Renehan AG, Malcomson L, Emsley R, Gollins S, Maw A, Myint AS, Rooney PS, Susnerwala S, Blower A, Saunders MP, Wilson MS, Scott N, O’Dwyer ST. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2016;17(2):174-83. https://doi.org/10.1016/S1470-2045(15)00467-2

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andjelka Isakovic, Sandra Dragicevic, Milena Ugrin, Marko Miladinov, Goran Barisic, Aleksandra Nikolic, Sonja Misirlic-Dencic

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.