Diversity of myxobacteria isolated from Weizhou Island, Guangxi, and their potential biological activities

Authors

  • Kangting Meng 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0009-0006-2864-1207
  • Wang Jiang 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0009-0005-0897-0073
  • Huimin Cai 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0000-0003-0647-8219
  • Zhaoming Yang 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0009-0006-2269-8835
  • Yiran Yuan 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0009-0006-6318-5702
  • Zhiwei Su 1. Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; 2. National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China https://orcid.org/0000-0003-2998-8617

DOI:

https://doi.org/10.2298/ABS250324010M

Keywords:

Myxobacteria, Cystobacter fuscus, Myxococcus virescens, antibacterial activity, multidrug resistance, Weizhou Island

Abstract

Paper description:

  • Antibiotic resistance is an increasing concern. Investigating culturable myxobacteria and assessing their potential could aid in the development of novel antibiotics.
  • We explored the diversity of culturable myxobacteria on Weizhou Island in the Beibu Gulf, Guangxi, China, evaluating their antibacterial properties and enzyme activities through plate confrontation and enzyme production tests.
  • The research investigates 28 pure cultures of myxobacteria across 8 genera, identifying two promising candidates for potential biological activity.
  • This research increases the diversity of culturable myxobacteria, providing resources for developing novel antibiotics and biotechnological applications.

Abstract: This study investigated the diversity of cultivable marine myxobacteria from Weizhou Island in the Beibu Gulf of Guangxi, with a particular focus on strains exhibiting potential antibacterial activity and associated enzyme production. The Escherichia coli entrapment method and filter paper methods were employed for separation, followed by purification using sequential conversion techniques. Myxobacteria were identified through morphology characterization and 16S rRNA gene sequence analyses. The antibacterial activity against porcine pathogens was assessed using the plate confrontation method, and enzyme activity was evaluated through the plate assay method. From 13 island samples, 28 myxobacteria cultures were isolated, representing 13 species across 8 genera, predominantly Myxococcus. The antibacterial test showed remarkable activity in 9 myxobacteria strains. Cystobacter fuscus (GXIMD 01665c) and Myxococcus virescens (GXIMD 01661b) produced inhibition zones of 54.4±0.18 mm and 57.33±0.09 mm against E. coli L2 and E. coli 10, respectively. The enzyme activity experiment revealed that all 9 strains of myxobacteria could produce protease and cellulase, with 7 strains specifically producing chitinase, 6 strains producing amylase, and 4 producing lipase. These findings highlight the diverse antibacterial properties and enzymatic potential of myxobacteria from Weizhou Island. Strains GXIMD 01665c and GXIMD 01661b emerged as valuable microbial resources, holding great promise for further research and development.

Downloads

References

Nohl A, Hamsen U, Jensen KO, Sprengel K, Ziegenhain F, Lefering R, Dudda M, Schildhauer TA, Wegner A. Incidence, impact and risk factors for multidrug-resistant organisms (MDRO) in patients with major trauma: a European multicenter cohort study. Eur J Trauma Emerg Surg. 2022;48(1):659-65. http://doi.org/10.1007/s00068-020-01545-4

Ranjbar R, Alam M. Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Evid Based Nurs. 2024;27(1):16. http://doi.org/10.1136/ebnurs-2022-103540

Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, Osek J. Antibiotic resistance in bacteria—a review. Antibiotics. 2022;11(8):1079. http://doi.org/10.3390/antibiotics11081079

Nasser M, Palwe S, Bhargava RN, Feuilloley MGJ, Kharat AS. Retrospective analysis on antimicrobial resistance trends and prevalence of β-lactamases in Escherichia coli and ESKAPE pathogens isolated from Arabian patients during 2000-2020. Microorganisms. 2020;8(10):1626. http://doi.org/10.3390/microorganisms8101626

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088-17. http://doi.org/10.1128/cmr.00088-17

Goes A, Lapuhs P, Kuhn T, Schulz E, Richter R, Panter F, Dahlem C, Koch M, Garcia R, Kiemer AK, Müller R, Fuhrmann G. Myxobacteria-derived outer membrane vesicles: potential applicability against intracellular infections. Cells. 2020;9(1):194. http://doi.org/10.3390/cells9010194

Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70(11):5972-6016. http://doi.org/10.1099/ijsem.0.004213

Gerth K, Pradella S, Perlova O, Beyer S, Müller R. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol. 2003;106(2):233-53. http://doi.org/10.1016/j.jbiotec.2003.07.015

Gerth K, Steinmetz H, Höfle G, Jansen R. Chlorotonil A, a macrolide with a unique gem-Dichloro-1,3-dione functionality from Sorangium cellulosum, Soce1525. Angew Chem Int Ed. 2008;47(3):600-2. http://doi.org/10.1002/anie.200703993

Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol. 2023;174(7):104079. http://doi.org/10.1016/j.resmic.2023.104079

Couturier C, Groß S, Von Tesmar A, Hoffmann J, Deckarm S, Fievet A, Dubarry N, Taillier T, Pöverlein C, Stump H, Kurz M, Toti L, Haag Richter S, Schummer D, Sizun P, Hoffmann M, Prasad Awal R, Zaburannyi N, Harmrolfs K, Wink J, Lessoud E, Vermat T, Cazals V, Silve S, Bauer A, Mourez M, Fraisse L, Leroi-Geissler C, Rey A, Versluys S, Bacqué E, Müller R, Renard S. Structure Elucidation, Total Synthesis, Antibacterial In Vivo Efficacy and Biosynthesis Proposal of Myxobacterial Corramycin. Angew Chem Int Ed. 2022;61(51):e202210747. http://doi.org/10.1002/anie.202210747

Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol. 2007;25(11):1281-9. http://doi.org/10.1038/nbt1354

Cheng YY, Qian YK, Li ZF, Wu ZH, Liu H, Li YZ. A novel cold-adapted lipase from Sorangium cellulosum strain So0157-2: gene cloning, expression, and enzymatic characterization. Int J Mol Sci. 2011;12(10):6765-80. http://doi.org/10.3390/ijms12106765

Avitia CI, Castellanos-Juárez FX, Sánchez E, Téllez-Valencia A, Fajardo-Cavazos P, Nicholson WL, Pedraza-Reyes M. Temporal secretion of a multicellulolytic system in Myxobacter sp. AL-1. Eur J Biochem. 2000;267(24):7058-64. http://doi.org/10.1046/j.1432-1327.2000.01804.x

Sasaki M, Takegawa K, Kimura Y. Enzymatic characteristics of an ApaH-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus. FEBS Lett. 2014;588(18):3395-402. http://doi.org/10.1016/j.febslet.2014.07.031

Li Zk, Ye XF, Liu MX, Xia CY, Zhang L, Luo X, Wang T, Chen Y, Zhao YQ, Qiao Y, Huang Y, Cao H, Gu XY, Fan JQ, Cui ZL, Zhang ZG. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria. ISME J. 2019;13(9):2223-35. http://doi.org/10.1038/s41396-019-0424-x

Zhang L, Dong CN, Wang JH, Liu MX, Wang JY, Hu JX, Liu L, Liu XY, Xia CY, Zhong LL, Zhao YQ, Ye XF, Huang Y, Fan JQ, Cao H, Wang JJ, Li YZ, Wall D, Li ZK, Cui ZL. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution. ISME J. 2023;17(7):1089-103. http://doi.org/10.1038/s41396-023-01423-y

Xia CY, Zhao YQ, Zhang L, Li X, Cheng Y, Wang DM, Xu CS, Qi MY, Wang JH, Guo XR, Ye XF, Huang Y, Shen DY, Dou DL, Cao H, Li ZK, Cui ZL. Myxobacteria restrain Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I. Nat Commun. 2023;14(1):5646. http://doi.org/10.1038/s41467-023-41247-0

Dawson MN. Island and island-like marine environments. Glob Ecol Biogeogr. 2016;25(7):831-46. http://doi.org/10.1111/geb.12314

Stuart YE, Losos JB, Algar AC. The island–mainland species turnover relationship. Proc Biol Sci. 2012;279(1744):4071-7. http://doi.org/10.1098/rspb.2012.0816

Maurice K, Laurent-Webb L, Dehail A, Bourceret A, Boivin S, Boukcim H, Selosse MA, Ducousso M. Fertility islands, keys to the establishment of plant and microbial diversity in a highly alkaline hot desert. J Arid Environ. 2023;219:105074. http://doi.org/10.1016/j.jaridenv.2023.105074

Qin ZJ, Yu KF, Wang YH, Xu LJ, Huang XY, Chen B, Li Y, Wang WH, Pan ZL. Spatial and intergeneric variation in physiological indicators of corals in the South China Sea: Insights Into their current state and their adaptability to environmental stress. J Geophys Res Oceans. 2019;124(5):3317-32. http://doi.org/10.1029/2018JC014648

Lu TM, Guan JS, Qin SJ, Liu YH, Su ZW. Study on culturable myxobacteria resources and their antibacterial activity in Beibu Gulf of Guangxi. Journal of Tropical Oceanography. 2023;42(03):158-68. https://link.cnki.net/urlid/44.1500.p.20220901.1349.003

Wang JJ, ran Q, Du XR, Wu SG, Wang JN, Sheng DH, Chen Q, Du ZJ, Li YZ. Two new Polyangium species, P. aurulentum sp. nov. and P. jinanense sp. nov., isolated from a soil sample. Syst Appl Microbiol. 2021;44(6):126274. http://doi.org/10.1016/j.syapm.2021.126274

Ngoc YNT, Dinh CD, Kim HNT, Phuong CN, Thi NV, Lan LDT, Le Bao NN, Minh TN, Ding NN, Tu AN. Isolation, phylogenetic analysis and bioprospection of myxobacteria from Vietnam. Biodiversitas Journal of Biological Diversity. 2023;24(10):d241047. http://doi.org/10.13057/biodiv/d241047

Li YZ, Hu W, Zhang YQ, Qiu ZJ, Zhang Y, Wu BH. A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods. 2002;50(2):205-9. http://doi.org/10.1016/S0167-7012(02)00029-5

Li XZ, Liu J, Gao PJ. A simple method for the isolation of cellulolytic myxobacteria and cytophagales. J Microbiol Methods. 1996;25(1):43-7. http://doi.org/10.1016/0167-7012(95)00081-X

Reichenbach H, Dworkin M. The myxobacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, editors. The prokaryotes, 2nd ed. New York: Springer-Verlag; 1992. pp. 3416-87. https://doi.org/10.1007/978-1-4757-2191-1_26

De-Lamballeri X, Zandotti C, Vignoli C, Bollet C, De-Micco P. A one-step microbial DNA extraction method using “Chelex 100” suitable for gene amplification. Res Microbiol. 1992;143(8):785-90. http://doi.org/10.1016/0923-2508(92)90107-Y

Morgan AD, MacLean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol. 2010;76(20):6920-7. http://doi.org/doi:10.1128/AEM.00414-10

Livingstone PG, Morphew RM, Whitworth DE. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Front Microbiol. 2017;8:1593. http://doi.org/10.3389/fmicb.2017.01593

Groß V, Reinhard A, Petters S, Pichler M, Urich T. Adding complexity to soil food webs: myxobacteria have broad predation spectra with bacteria, yeasts and filamentous fungi in vitro. Eur J Soil Biol. 2023;117:103508. http://doi.org/10.1016/j.ejsobi.2023.103508

Liu BH, Luo YX, Zeng YG, Xie XY, Rao T, Chen J, Zhang YP. A preliminary study on the enzyme activity of 10 strains of slime mold bacterial strains in Chengdu. Journal of Chengdu University (Natural Science). 2012;31(1):25-8. http://doi.org/10.3969/j.issn.1004-5422.2012.01.009

Kuever J, Rainey FA, Widdel F. Deltaproteobacteria class nov. In: Brenner DJ, Krieg NR, Staley JR, editors. Bergey's Manual® of Systematic Vol 2, The Proteobacteria (Part C). New York: Springer-Verlag; 2005. pp. 1059-143. http://doi.org/10.1007/978-0-387-29298-4_3

Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol. 2003;26(2):189-96. http://doi.org/10.1078/072320203322346038

Herrmann J, Fayad AA, Müller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep. 2017;34(2):135-60. http://doi.org/10.1039/C6NP00106H

Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep. 2010;27(9):1276-95. http://doi.org/10.1039/C001260M

Bader CD, Panter F, Müller R. In depth natural product discovery - Myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv. 2020;39:107480. http://doi.org/10.1016/j.biotechadv.2019.107480

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1-43. http://doi.org/doi:10.1128/mmbr.00019-15

Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot. 1987;40(1):7-13.

Bode HB, Ring MW, Schwär G, Altmeyer MO, Kegler C, Jose IR, Singer M, Müller R. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. ChemBioChem. 2009;10(1):128-40. http://doi.org/10.1002/cbic.200800219

Li ZK, Ji K, Zhou J, Ye XF, Wang T, Luo X, Huang Y, Cao H, Cui ZL, Kong Y. A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing. Int J Biol Macromol. 2017;105:1300-9. http://doi.org/10.1016/j.ijbiomac.2017.07.153

Chen XP, Zhang L, Li X, Qiao Y, Zhang YJ, Zhao YQ, Chen J, Ye XF, Huang Y, Li ZK, Cui ZL. Impact of maltogenic α-amylase on the structure of potato starch and its retrogradation properties. Int J Biol Macromol. 2020;145:325-31. http://doi.org/10.1016/j.ijbiomac.2019.12.098

Li YQ, Zhou XL, Zhang XJ, Xu ZQ, Dong HH, Yu GH, Cheng P, Yao Q, Zhu HH. A myxobacterial GH19 lysozyme with bacteriolytic activity on both Gram-positive and negative phytopathogens. AMB Express. 2022;12(1):54. http://doi.org/10.1186/s13568-022-01393-y

Ye XF, Li ZK, Luo X, Wang WH, Li YK, Li R, Zhang B, Qiao Y, Zhou J, Fan JQ, Wang H, Huang Y, Cao H, Cui ZL, Zhang RF. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome. 2020;8(1):49. http://doi.org/10.1186/s40168-020-00824-x

Downloads

Published

2025-06-26

How to Cite

1.
Meng K, Jiang W, Cai H, Yang Z, Yuan Y, Su Z. Diversity of myxobacteria isolated from Weizhou Island, Guangxi, and their potential biological activities. Arch Biol Sci [Internet]. 2025Jun.26 [cited 2025Jul.26];77(2):185-9. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/10869

Issue

Section

Articles