Hibiscus sabdariffa mitigates hyperlipidemia, cardiac oxidative stress, and inflammatory cytokines in serum and cardiac tissue of adult female Wistar rats with fructose-induced metabolic syndrome

Authors

DOI:

https://doi.org/10.2298/ABS250608020K

Keywords:

Metabolic syndrome, Lipid metabolism, Antioxidant activity, Cytokines, Hibiscus sabdariffa

Abstract

Paper description:

  • Hibiscus sabdariffa (HS) exhibits a therapeutic potential in metabolic syndrome, a cluster of risk factors affecting cardiovascular health.
  • This study included 35 female Wistar rats divided into five groups as follows: normal control, an untreated metabolic syndrome group, three treatment groups receiving different doses of HS extract.
  • HS extract reduced tumor necrosis factor-alpha and interferon-gamma, and increased brain-derived neurotrophic factor, showing novel immunomodulatory and neuroprotective effects in hyperlipidemia.
  • These findings offer initial insights into the combined cardiovascular, immune, and neuroprotective benefits of HS extract

Abstract: Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that includes central obesity, insulin resistance, high blood pressure, atherogenic dyslipidemia, and chronic low-grade inflammation, all of which together elevate the risk of cardiovascular disease and type 2 diabetes. MetS is more prevalent in women. A study involving 35 female Wistar rats investigated Hibiscus sabdariffa (HS) extract’s therapeutic effects across five groups: normal control, untreated metabolic syndrome group, three experimental groups with fructose-induced metabolic syndrome receiving 100, 200, and 400 mg/kg HS extract. HS extract at 400 mg/kg significantly improved serum lipid metabolism by reducing total cholesterol, triglycerides, and low-density lipoprotein (LDL) cholesterol, while increasing high-density lipoprotein (HDL) cholesterol. It also improved cardiovascular risk indicators, the Castelli risk indices I and II. HS extract demonstrated potent antioxidant effects in the heart by reducing malondialdehyde (MDA) levels and enhancing the activities of superoxide dismutase (SOD), catalase (CAT), and the concentration of reduced glutathione (GSH). It also had immunomodulatory effects, reducing inflammatory markers, tumor necrosis factor (TNF)-α, and interferon (IF)-γ in the serum and increasing brain-derived neurotrophic factor (BDNF) in both serum and heart. IF-γ was increased significantly in the heart. In conclusion, HS extract, especially at higher doses, shows substantial therapeutic potential for managing metabolic syndrome by improving lipid profiles, enhancing cardiovascular health, boosting antioxidant defenses, and supporting immune function.

Downloads

Download data is not yet available.

References

Jha BK, Sherpa ML, Imran M, Mohammed Y, Jha LA, Paudel KR, Jha SK. Progress in Understanding Metabolic Syndrome and Knowledge of Its Complex Pathophysiology. Diabetology. 2023;4(2):134-59. https://doi.org/10.3390/diabetology4020015.

Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, Pan F. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med. 2024;30(1):279. https://doi.org/10.1186/s10020-024-01019-y.

Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and Hepatic Insulin Resistance. Crit Rev Clin Lab Sci.2020;57(5):308. https://doi.org/10.1080/10408363.2019.1711360.

Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Milutinović DV, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other’s Neurobehavioral Effects in Female Rats. Int J Mol Sci 2024;25(21):11 721. https://doi.org/10.3390/ijms252111721.

Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, Gabriella A. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants. 2023;12(12):2091. https://doi.org/10.3390/antiox12122091.

Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis. 2021;20:23. https://doi.org/10.1186/s12944-021-01435-7.

Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A, Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020;8:2050312120965752. https://doi.org/10.1177/2050312120965752.

Almajid A, Bazroon A, AlAhmed A, Bakhurji O. Exploring the Health Benefits and Therapeutic Potential of Roselle (Hibiscus sabdariffa) in Human Studies: A Comprehensive Review. Cureus. 2023;15(11):e49309. https://doi.org/10.7759/cureus.49309.

Salem MA, Ezzat SM, Ahmed KA, Alseekh S, Fernie AR, Essam RM. A Comparative Study of the Antihypertensive and Cardioprotective Potentials of Hot and Cold Aqueous Extracts of Hibiscus sabdariffa L. in Relation to Their Metabolic Profiles. Front Pharmacol. 2022;13:840478. https://doi.org/10.3389/fphar.2022.840478.

Ellis LR, Zulfiqar S, Holmes M, Marshall L, Dye L, Boesch C. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutr Rev. 2022;80(6):1723. https://doi.org/10.1093/nutrit/nuab104.

Sapian S, Ibrahim Mze AA, Jubaidi FF, Mohd Nor NA, Taib IS, Hamid ZA, Zainalabidin S, Mohamad Anuar NN, Katas H, Latip J, Jalil J, Abu Bakar NF, Budin SB. Therapeutic Potential of Hibiscus sabdariffa Linn. in Attenuating Cardiovascular Risk Factors. Pharmaceuticals. 2023;16(6):807. https://doi.org/10.3390/ph16060807.

Efosa JO, Omage K, Azeke MA. Hibiscus sabdariffa calyx protects against oxidative stress and aluminium chloride-induced neurotoxicity in the brain of experimental rats. Toxicol Rep. 2023;10:46980. https://doi.org/10.1016/j.toxrep.2023.04.008.

Didelot Tomani JC, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L, Frederich M, Muganga R, Souopgui J. The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules. 2020;25(20):4693. https://doi.org/10.3390/molecules25204693.

Ajiboye TO, Raji HO, Adeleye AO, Adigun NS, Giwa OB, Ojewuyi OB, Oladiji AT. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats. J Sci Food Agric. 2016;96(5):1522-31. https://doi.org/10.1002/jsfa.7254

Zúñiga-Muñoz AM, Guarner V, Díaz-Cruz A, Diaz-Diaz E, Nava-Cuellar C, Beltrán-Rodríguez U, Pérez-Torres I. Modulation of oxidative stress in fatty liver of rat with metabolic syndrome by Hibiscus sabdariffa. Open Med Chem J. 2013;13(3):196-205. https://doi.org/10.2174/18715222113139990060

Ibrahim KG, Chivandi E, Mojiminiyi FBO, Erlwanger KH. The response of male and female rats to a high-fructose diet during adolescence following early administration of Hibiscus sabdariffa aqueous calyx extracts. J Dev Orig Health Dis. 2017;8(6):628-37. https://doi.org/10.1017/S204017441700040X

Pérez-Torres I, Torres-Narváez JC, Guarner-Lans V, Díaz-Díaz E, Perezpeña-Diazconti M, Palacios AR, Manzano-Pech L. Myocardial protection from ischemia-reperfusion damage by the antioxidant effect of Hibiscus sabdariffa Linnaeus on metabolic syndrome rats. Oxid Med Cell Longev. 2019;2019:1724194. https://doi.org/10.1155/2019/1724194

Aliyu B, Oyeniyi YJ, Mojiminiyi FB, Isezuo SA, Alada AR. The aqueous calyx extract of Hibiscus sabdariffa lowers blood pressure and heart rate via sympathetic nervous system dependent mechanisms. Niger J Physiological Sci. 2014;29:131-6.

Ferreira-Santos P, Aparicio R, Carrón R, Montero MJ, Sevilla MÁ. Lycopene-supplemented diet ameliorates metabolic syndrome induced by fructose in rats. J Funct Foods. 2020;73:104098. https://doi.org/10.1016/j.jff.2020.104098

Paunovic M, Vucic V, Milosevic M, Ristic-Medic D, Arsic A, Kojadinovic M, Petrovic S. Use of high-fat high-fructose diet for a model of metabolic syndrome in Wistar rats: challenges remain. Acta Vet Brno. 2023;92(4):389-96. https://doi.org/10.2754/avb202392040389

Abdulla MH, Sattar MA, Abdullah NA, Khan MAH, Anand Swarup KRL, Johns EJ. The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague-Dawley rats. Eur J Nutr. 2011;50(4):251–60. https://doi.org/10.1007/s00394-010-0133-8

Dharmaraj S, Rajaragupathy S, Denishya S. A Descriptive Study of Atherogenic Indices in Patients Admitted to a Tertiary Care Hospital. Cureus. 2022;14(12):e32231. https://doi.org/10.7759/cureus.32231

Raaj I, Thalamati M, N GM, Rao A. The Role of the Atherogenic Index of Plasma and the Castelli Risk Index I and II in Cardiovascular Disease. Cureus. 2024;16(11):e74644. https://doi.org/10.7759/cureus.74644

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–58. https://doi.org/10.1016/0003-2697(79)90738-3

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-75.

Claiborne A, Greenwald RA. CRC handbook of methods for oxygen radical research. Boca Raton: CRC Press; 1986. p. 283-4.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. https://doi.org/10.1016/0003-2697(76)90527-3

Tiwari DD, Thorat VM, Pakale PV, Patil S, Chavan D. Evaluation of lipid profile modulation by Berberis asiatica, Withania somnifera, and their synergy in type 2 diabetic Wistar rats. Cureus. 2024;16(8):e67974. https://doi.org/10.7759/cureus.67974

Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y, Assi HI. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23(2):786. https://doi.org/10.3390/ijms23020786

Yunarto N, Helentina ED, Sulistyowati I, Reswandaru UN, Alegantina S, Isnawati A. Antioxidant Activity and Inhibition of HMG CoA Reductase Enzyme by Bay Leaf (Syzygium polyanthum Wight) Extract as a Treatment for Hyperlipidemia. Trop J Nat Prod Res. 2022;6(11):1798-801.

Çil Arslan EI, Saçan Ö. Antioxidant and 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitory activities of some plant samples. Food Health. 2023;9(4):293-303. https://doi.org/10.3153/FH23026

Huang H, Chang W, Wu Y, Yang B, Xu M, Lin M, Chen H, Cheng J, Lee M. Phytochemical levels and biological activities in Hibiscus sabdariffa L. were enhanced using microbial fermentation. Ind Crops Prod. 2022;176:114408. https://doi.org/10.1016/j.indcrop.2021.114408

Chatepa LEC, Masamba KG, Sanudi T, Ngwira A, Tanganyika J, Chamera F. Effects of aqueous and methanolic solvent systems on phytochemical and antioxidant extraction from two varieties of Roselle (Hibiscus sabdariffa L.) var. Sabdariffa plant from Central Malawi. Food Human. 2023;1:1172-79. https://doi.org/10.1016/j.foohum.2023.09.006

Aguirre-García F, Yáñez-López L, Armella M, Verde J. Studies from Hibiscus sabdariffa (Hibiscus) plant for blood cholesterol levels reduction. Am J Plant Sci. 2019;10:497-511. https://doi.org/10.4236/ajps.2019.104036

Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024;15(11):1-16. https://doi.org/10.1038/s41419-024-07166-8

Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res. 2024. https://doi.org/10.1016/j.jare.2024.06.016

Elyasi A, Voloshyna I, Ahmed S, Kasselman LJ, Behbodikhah J, De Leon J, Reiss AB. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res. 2020;69(10):975-88. https://doi.org/10.1007/s00011-020-01382-6

Zhou QD, Chi X, Lee MS, Hsieh WY, Mkrtchyan JJ, Feng C, He C, York AG, Bui VL, Kronenberger EB, Ferrari A, Xiao X, Daly AE, Tarling EJ, Damoiseaux R, Scumpia PO, Smale ST, Williams KJ, Tontonoz P, Bensinger SJ. Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nat Immunol. 2020;21(7):746. https://doi.org/10.1038/s41590-020-0695-4

Mautone Gomes H, Silveira AK, Gasparotto J, Bortolin RC, Terra SR, Brum PO, Gelain DP, Fonseca Moreira JC. Effects of coconut oil long-term supplementation in Wistar rats during metabolic syndrome - regulation of metabolic conditions involving glucose homeostasis, inflammatory signals, and oxidative stress. J Nutr Biochem. 2023;114:109272. https://doi.org/10.1016/j.jnutbio.2023.109272

Ojulari OV, Lee SG, Nam O. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules. 2019;24(1):210. https://doi.org/10.3390/molecules24010210

Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022;7(1):1-25. https://doi.org/10.1038/s41392-022-01073-0

Edo GI, Samuel PO, Jikah AN, Oloni GO, Ifejika MN, Oghenegueke O, Ossai S, Ajokpaoghene MO, Asaah EU, Uloho PO, Akpoghelie PO, Ugbune U, Ezekiel GO, Onoharigho FO, Agbo JJ, Essaghah AEA. Proximate composition and health benefit of Roselle leaf (Hibiscus sabdariffa). Insight into food and health benefits. Food Chem Adv. 2023;3:100437. https://doi.org/10.1016/j.focha.2023.100437

Norouzzadeh M, Hasan Rashedi M, Azizi MH, Teymoori F, Maghsoomi Z, Shidfar F. Efficacy and safety of Hibiscus sabdariffa in cardiometabolic health: An overview of reviews and updated dose-response meta-analysis. Complement Ther Med. 2025;89:103135. https://doi.org/10.1016/j.ctim.2025.103135

Ayoub MA. Effects of flavonoids on cholesterol efflux capability. Int J Med Biochem. 2022;5(3):176-81. https://doi.org/10.14744/ijmb.2022.96977

Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9(9):981. https://doi.org/10.3390/nu9090981

Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, Saini AK. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev. 2020;2020:5245308. https://doi.org/10.1155/2020/5245308

Patial S, Sharma A, Raj K, Shukla G. Atherosclerosis: Progression, risk factors, diagnosis, treatment, probiotics and synbiotics as a new prophylactic hope. Microbe. 2024;5:100212. https://doi.org/10.1016/j.microb.2024.100212

Mahdavi-Roshan M, Shoaibinobarian N, Noormohammadi M, Mousavi AF, Rakhsh AS, Salari A, Ghorbani Z. Inflammatory markers and atherogenic coefficient: Early markers of metabolic syndrome. Int J Endocrinol Metab. 2022;20(4):e127445. https://doi.org/10.5812/ijem-127445

Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci. 2023;24(9):7898. https://doi.org/10.3390/ijms24097898

Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, Bouzas C, Mateos D, Pons A, Tur JA, Sureda A. Metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants. 2020;9(3):236. https://doi.org/10.3390/antiox9030236

Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front Pharmacol. 2021;11:613780. https://doi.org/10.3389/fphar.2020.613780

Gusti AM, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants. 2021;10(4):595. https://doi.org/10.3390/antiox10040595

Santacroce G, Gentile A, Soriano S, Novelli A, Lenti MV, Di Sabatino A. Glutathione: Pharmacological aspects and implications for clinical use in non-alcoholic fatty liver disease. Front Med. 2023;10:1124275. https://doi.org/10.3389/fmed.2023.1124275

Leao F, Soto ME, Esther M. Modulation of renal function in a metabolic syndrome rat model by antioxidants in Hibiscus sabdariffa L. Molecules. 2020;26(7):2074. https://doi.org/10.3390/molecules26072074

Hamadjida A, Mbomo REA, Minko SE, Ntchapda F, Kilekoung Mingoas JP, Nnanga N. Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metabolism Open. 2024;21:100278. https://doi.org/10.1016/j.metop.2024.100278

Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2020;320(3):C375. https://doi.org/10.1152/ajpcell.00379.2020

Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022;13:806470. https://doi.org/10.3389/fphar.2022.806470

Sustar A, Perkovic MN, Erjavec GN, Strac DS, Pivac N. Association between reduced brain-derived neurotrophic factor concentration & coronary heart disease. Indian J Med Res. 2019;150(1):43. https://doi.org/10.4103/ijmr.IJMR_1566_17

Porter GA. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry. 2022;12(1):77. https://doi.org/10.5498/wjp.v12.i1.77

Zhang W, Lin M, Jia D, Zhang Q, Zhang D, Gu Y, Peng Q, Zheng S. Inhibition of TNF-α/IFN-γ-induced inflammation in HaCaT cell by roselle (Hibiscus sabdariffa L.) extractions. Food Biosci. 2024;60:104432. https://doi.org/10.1016/j.fbio.2024.104432

Downloads

Published

2025-10-02

How to Cite

1.
Khan SM, Isa AI, Eissa H, Metwally AS, Mohamed MO, Bako IG, Khalaf NEA. Hibiscus sabdariffa mitigates hyperlipidemia, cardiac oxidative stress, and inflammatory cytokines in serum and cardiac tissue of adult female Wistar rats with fructose-induced metabolic syndrome. Arch Biol Sci [Internet]. 2025Oct.2 [cited 2025Dec.5];77(3):245-56. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/11109

Issue

Section

Articles