Methyl jasmonate elicitation improves antioxidant and antibacterial activities in Portulaca oleracea
DOI:
https://doi.org/10.2298/ABS250626025NKeywords:
Portulaca oleracea, elicitation, methyl jasmonate, antioxidant activity, antibacterial activityAbstract
Paper description:
- Elicitation is a known strategy to enhance secondary metabolite production in plants, improving their medicinal properties, nutritional content, and functional food value.
- The effects of methyl jasmonate treatment on Portulaca oleracea, with focus on the plants’ antioxidant activity, antibacterial properties, and toxicity profile were investigated.
- Methyl jasmonate enhanced the antioxidant and antibacterial activities of Portulaca oleracea, while exhibiting no significant toxicity.
- This work highlights the potential of methyl jasmonate elicitation as a sustainable approach to enhance the medicinal and functional value of Portulaca oleracea, supporting its use in health-promoting plant-based products.
Abstract: The application of elicitors has been shown to enhance the biological activities of crops and medicinal plants by modulating their phytochemical content. This study evaluated the effect of methyl jasmonate elicitation on the biological activities of Portulaca oleracea. Antioxidant activity of methanol and aqueous extracts from methyl jasmonate-elicited and non-elicited plants was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Antibacterial activity was evaluated against Bacillus cereus, Serratia marcescens, Escherichia coli, and Staphylococcus aureus using the well-diffusion method. Toxicity was tested using the brine shrimp lethality assay. The methyl jasmonate-elicited methanol extract showed the highest antioxidant activity with half maximal inhibitory concentration (IC50) values of 1556.52±30.81 µg/mL (DPPH), 3353.33±29.83 µg/mL (ABTS), and ferric reducing power of 273.24±3.49 mg ferrous (II)/g dry extract. Only methyl jasmonate-elicited methanol and aqueous extract inhibited the growth of Serratia marcescens, with inhibition zones of 15.1±0.06 mm and 11±0.06 mm, respectively. No inhibition was observed against the other tested bacteria. Toxicity results confirmed the non-toxic nature of all extracts, with median lethal concentration (LC50) values >1000 µg/mL. Overall, methyl jasmonate elicitation enhanced the antioxidant and selective antibacterial activity of P. oleracea.
Downloads
References
Amirul Alam M, Juraimi AS, Rafii M, Hamid AA, Kamal Uddin M, Alam MZ, Latif MA. Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep. 2014;41:7395-411. https://doi.org/10.1007/s11033-014-3628-1
Oliveira I, Valentão P, Lopes R, Andrade PB, Bento A, Pereira JA. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem J. 2009;92(2):129-34. https://doi.org/10.1016/j.microc.2009.02.006
Palaniswamy UR, McAvoy RJ, Bible BB. Stage of Harvest and Polyunsaturated Essential Fatty Acid Concentrations in Purslane (Portulaca oleraceae) Leaves. J Agric Food Chem 2001;49(7):3490-3. https://doi.org/10.1021/jf0102113
Lim YY, Quah EPL. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem. 2007;103(3):734-40. https://doi.org/10.1016/j.foodchem.2006.09.025
Uddin MK, Juraimi AS, Hossain MS, Nahar MAU, Ali ME, Rahman M. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega‐3 fatty acid, and antioxidant attributes. Sci World J. 2014;2014(1):951019. https://doi.org/10.1155/2014/951019
Sangeetha S, Kiran RS, Abbulu K, Battu S. A review on traditional herb Portulaca oleracea. World J Pharm Res. 2020;9(3):578-601.
Adrien KM, Calixte B, Honoré T, Lucien BG, Vincent E, Joseph DA, David NJ. Antifungal Activity of Roots Barks Extract of Securinega virosa (Roxb. ex Willd.) Baill and Anogeissus leiocarpa (DC.) Guill. & Perr, Two Plants Used in the Traditional Treatment of Candidiasis in Northern Côte d'Ivoire. Int J Biochem Res Rev. 2015;8(1):1-11. https://doi.org/10.9734/IJBCRR/2015/17481
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. J Ethnopharmacol. 2024;319:117211. https://doi.org/10.1016/j.jep.2023.117211
Wei X, Vrieling K, Kim HK, Mulder PPJ, Klinkhamer PGL. Application of methyl jasmonate and salicylic acid lead to contrasting effects on the plant's metabolome and herbivory. Plant Sci. 2021;303:110784. https://doi.org/10.1016/j.plantsci.2020.110784
Baek MW, Choi HR, Lee HC, Lee JH, Lee O-H, Hong JS, Jeong CS, Tilahun S. Preharvest methyl jasmonate and salicylic acid treatments improve the nutritional qualities and postharvest storability of tomato. Sci Hortic. 2023;321:112332. https://doi.org/10.1016/j.scienta.2023.112332
El-Ziat RA, Soliman DM, El-Sayed IM. Exogenous utilization of jasmonic acid and methyl jasmonate stimulates growth and biochemical composition of lavender (Lavandula angustifolia) plant. Egypt Pharm J. 2023;22(3):372-9. https://doi.org/10.4103/epj.epj_23_23
Ahmed ZFR, Al Shaibani FYY, Kaur N, Maqsood S, Schmeda-Hirschmann G. Improving Fruit Quality, Bioactive Compounds, and Storage Life of Date Palm (Phoenix dactylifera L., cv. Barhi) Using Natural Elicitors. Horticulturae. 2021;7(9):293. https://doi.org/10.3390/horticulturae7090293
Modesti M, Petriccione M, Forniti R, Zampella L, Scortichini M, Mencarelli F. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration. Food Res Int. 2018;112:369-77. https://doi.org/10.1016/j.foodres.2018.06.061
Rahmani N, Radjabian T. Integrative effects of phytohormones in the phenolic acids production in Salvia verticillata L. under multi-walled carbon nanotubes and methyl jasmonate elicitation. BMC Plant Biol. 2024;24(1):56. https://doi.org/10.1186/s12870-023-04719-5
Jiang CX, Yu JX, Zhu NN, Zhou D, Yuan ST, Lu MQ, Pan XJ, Dai LS, Qi Y, Li XK, Wu ZG. Integrative omic and transgenic analyses reveal methyl jasmonate- and abscisic acid-responsive regulator CwbHLH2 that positively regulates terpenoid biosynthesis in Curcuma wenyujin. Ind Crops Prod. 2024;209:118039. https://doi.org/10.1016/j.indcrop.2024.118039
Meza SLR, de Castro Tobaruela E, Pascoal GB, Magalhães HCR, Massaretto IL, Purgatto E. Induction of Metabolic Changes in Amino Acid, Fatty Acid, Tocopherol, and Phytosterol Profiles by Exogenous Methyl Jasmonate Application in Tomato Fruits. Plants. 2022;11(3):366. https://doi.org/10.3390/plants11030366
Li Q, Xu J, Zheng Y, Zhang Y, Cai Y. Transcriptomic and metabolomic analyses reveal that exogenous methyl jasmonate regulates galanthamine biosynthesis in lycoris longituba seedlings. Front Plant Sci. 2021;12:713795. https://doi.org/10.3389/fpls.2021.713795
Wang J, Mao S, Liang M, Zhang W, Chen F, Huang K, Wu Q. Preharvest Methyl Jasmonate Treatment Increased Glucosinolate Biosynthesis, Sulforaphane Accumulation, and Antioxidant Activity of Broccoli. Antioxidants. 2022;11(7):1298. https://doi.org/10.3390/antiox11071298
Kowalczyk T, Sitarek P, Merecz-Sadowska A, Szyposzyńska M, Spławska A, Gorniak L, Bijak M, Śliwiński T. Methyl Jasmonate Effect on Betulinic Acid Content and Biological Properties of Extract from Senna obtusifolia Transgenic Hairy Roots. Molecules. 2021;26(20):6208. https://doi.org/10.3390/molecules26206208
Złotek U, Rybczyńska-Tkaczyk K, Michalak-Majewska M, Sikora M, Jakubczyk A. Potential Acetylcholinesterase, Lipase, α-Glucosidase, and α-Amylase Inhibitory Activity, as well as Antimicrobial Activities, of Essential Oil from Lettuce Leaf Basil (Ocimum basilicum L.) Elicited with Jasmonic Acid. Appl Sci. 2020;10(12):4315. https://doi.org/10.3390/app10124315
Nyanasaigran L, Ramasamy S, Gautam A, Guleria P, Kumar V, Yaacob JS. Methyl jasmonate elicitation improves the growth performance and biosynthesis of antioxidant metabolites in Portulaca oleracea through ROS modulation. Ind Crops Prod. 2024;216:118709. https://doi.org/10.1016/j.indcrop.2024.118709
Ercıslı S, Coruh I, Gormez A, Sengul M. Antioxidant and antibacterial activities of Portulaca oleracea L. grown wild in Turkey. Ital J Food Sci. 2008;20(4).
Cho YJ, Ju IS, Kwon OJ, Chun SS, An BJ, Kim JH. Biological and antimicrobial activity of Portulaca oleracea. J Korean Soc Applied Biol Chem. 2008;51(1). https://doi.org/10.3839/jksabc.2008.048
Wasnik DD, Tumane P. Preliminary phytochemical screening and evaluation of antibacterial activity of Portulaca oleracea L. against multiple drug resistant (MDR) pathogens isolated from clinical specimen. World J Pharmac Res. 2014;3(10):920-31.
Saheri F, Barzin G, Pishkar L, Boojar MMA, Babaeekhou L. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia. 2020;75(12):2189-200. https://doi.org/10.2478/s11756-020-00571-2
He J, You X, Qin L. High Salinity Reduces Plant Growth and Photosynthetic Performance but Enhances Certain Nutritional Quality of C4 Halophyte Portulaca oleracea L. Grown Hydroponically Under LED Lighting. Front Plant Sci. 2021;12(457). https://doi.org/10.3389/fpls.2021.651341
Jin R, Wang Y, Liu R, Gou J, Chan Z. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses. Front Plant Sci. 2016;6(1123). https://doi.org/10.3389/fpls.2015.01123
Mohammadi Azni M, Moradi H, Ghasemi K, Biparva P. Elicitation of dopamine biosynthesis in common purslane as affected by methyl jasmonate and silicon. J Plant Nutr. 2021;44(20):3083-98. https://doi.org/10.1080/01904167.2021.1936027
Mahmud N, Ramasamy S, Manickam S, Wan-Mohtar WAAQI. Synergistic-antagonistic interaction of vegetable extracts, Acalypha indica, Centella asiatica, and Sesbania grandiflora: Wound healing, antioxidant, protectivity, and antimicrobial properties. Malays J Microbiol. 2020;16(6). https://doi.org/10.21161/mjm.200792
Sulaiman SF, Ooi KL. Polyphenolic and vitamin C contents and antioxidant activities of aqueous extracts from mature-green and ripe fruit fleshes of Mangifera sp. J Agric Food Chem 2012;60(47):11832-8. https://doi.org/10.1021/jf303736h
Mohd Yusof FF, Yaacob JS, Osman N, Ibrahim MH, Wan-Mohtar WAAQI, Berahim Z, Mohd Zain NA. Shading effects on leaf gas exchange, leaf pigments and secondary metabolites of Polygonum minus Huds., an aromatic medicinal herb. Plants. 2021;10(3):608. https://doi.org/10.3390/plants10030608
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292
Sahgal G, Jayanthi P, Siah C, Ong MT. Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test. J Adv Pharm Technol Res. 2013;4:179-82. https://doi.org/10.4103/2231-4040.121411
Erkan N. Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chem. 2012;133(3):775-81. https://doi.org/10.1016/j.foodchem.2012.01.091
Sicari V, Loizzo MR, Tundis R, Mincione A, Pellicano TM. Portulaca oleracea L.(Purslane) extracts display antioxidant and hypoglycaemic effects. J Appl Bot Food Qual. 2018;91(1):39-46.
Singh S. Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chem Adv. 2023;2:100156. https://doi.org/10.1016/j.focha.2022.100156
Gorni PH, Pacheco AC, Lima Moro A, Silva JFA, Moreli RR, de Miranda GR, Pelegrini JM, Zaniboni CB, Spera KD, Bronzel Junior JL, da Silva RM. Elicitation improves the leaf area, enzymatic activities, antioxidant activity and content of secondary metabolites in Achillea millefolium L. grown in the field. J Plant Growth Regul. 2021;40:1652-66. https://doi.org/10.1007/s00344-020-10217-x
Baek MW, Choi HR, Solomon T, Jeong CS, Lee OH, Tilahun S. Preharvest methyl jasmonate treatment increased the antioxidant activity and glucosinolate contents of hydroponically grown pak choi. Antioxidants. 2021;10(1):131. https://doi.org/10.3390/antiox10010131
Wang C, Zhang J, Lv J, Li J, Gao Y, Patience BE, Niu T, Yu J, Xie J. Effect of Methyl Jasmonate Treatment on Primary and Secondary Metabolites and Antioxidant Capacity of the Substrate and Hydroponically Grown Chinese Chives. Front Nutr. 2022;9. https://doi.org/10.3389/fnut.2022.859035
Jirakiattikul Y, Rithichai P, Kwanthong P, Itharat A. Effect of jasmonic acid elicitation period on enhancement of bioactive compounds and antioxidant activity in callus cultures of Hibicus sabdariffa Linn. Hortic Environ Biotechnol. 2021;62(4):629-36. https://doi.org/10.1007/s13580-021-00332-3
Sardar T, Ishtiaq M, Mazhar MW, Maqbool M, Moussa IM, Zaman W, Mahmoud EA. Methyl jasmonate and iron oxide nanoparticles act as elicitors to stimulate production of bioactive antioxidants and metabolites in the in vitro callus cultures of Bergenia ciliata (haw.) Sternb. S Afr J Bot. 2023;162:201-10. https://doi.org/10.1016/j.sajb.2023.09.016
Truc TT, Bui PH, Phan NTT, My DH, Minh TNK. Bioactive Compounds from Portulaca oleracea L. Extract. Chem Eng Trans 2023;106:637-42.
El-Sayed M, Awad S, Ibrahim A. Impact of purslane (Portulaca oleracea L.) extract as antioxidant and antimicrobial agent on overall quality and shelf life of Greek-style yoghurt. Egypt J Agric Res 2019;47(1):51-64.
Moumni S, Elaissi A, Trabelsi A, Merghni A, Chraief I, Jelassi B, Chemli R, Ferchichi S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement Med Ther. 2020;20:1-15. https://doi.org/10.1186/s12906-020-02888-6
Thouri A, Chahdoura H, El Arem A, Omri Hichri A, Ben Hassin R, Achour L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement Altern Med. 2017;17(1):248. https://doi.org/10.1186/s12906-017-1751-y
Traversier M, Gaslonde T, Lecso M, Michel S, Delannay E. Comparison of extraction methods for chemical composition, antibacterial, depigmenting and antioxidant activities of Eryngium maritimum. Int J Cosmet Sci. 2020;42(2):127-35. https://doi.org/10.1111/ics.12595
Kengne IC, Feugap LDT, Njouendou AJ, Ngnokam CDJ, Djamalladine MD, Ngnokam D, Voutquenne-Nazabadioko L, Tamokou JD. Antibacterial, antifungal and antioxidant activities of whole plant chemical constituents of Rumex abyssinicus. BMC Complement Med Ther 2021;21(1):164. https://doi.org/10.1186/s12906-021-03325-y
Chlif N, Diouri M, El Messaoudi N, Ed-Dra A, Filali F, Bentayeb A. Phytochemical composition, antioxidant and antibacterial activities of extracts from different parts of Brocchia cinerea (Vis.). Biointerface Res Appl Chem. 2022;12:4432-47. https://doi.org/10.33263/BRIAC124.44324447
Walia S, Mukhia S, Bhatt V, Kumar R, Kumar R. Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Ind Crops Prod. 2020;150:112449. https://doi.org/10.1016/j.indcrop.2020.112449
Chung I-M, Thiruvengadam M, Rekha K, Rajakumar G. Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.). Braz Arch Biol Technol. 2016;59:e160393. https://doi.org/10.1590/1678-4324-2016160393
Shireesha S, Khan A. Phytochemical analysis and antimicrobial activity of salicylic acid (SA) and jasmonic acid (JA) treated plants of Acalypha indica Linn. Int J Res Biosci Agric Technol. 2021;17:645-56.
Konan AML, Golly KJ, Kra AKM, Adima AA, Lohoues EEC. Phytochemical screening and toxicity assessment of Imperata cylindrica (L.) P. Beauv.(Poaceae) raw extracts with brine shrimp (Artemia salina) lethality assay. J Biosci Med. 2022;10(8):153-71. https://doi.org/10.4236/jbm.2022.108014
Clemen-Pascual LM, Macahig RAS, Rojas NRL. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol Rep. 2022;9:22-35. https://doi.org/10.1016/j.toxrep.2021.12.002
Otang WM, Grierson DS, Ndip RN. Assessment of potential toxicity of three South African medicinal plants using the brine shrimp (Artemia salina) assay. Afr J Pharm Pharmacol. 2013;7(20):1272-9. https://doi.org/10.5897/AJPP12.264
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982;45(5):31-4. https://doi.org/10.1055/s-2007-971236
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ms. LAAVANYA NYANASAIGRAN, DR. SUJATHA RAMASAMY, DR. SWEE SEONG TANG, DR. JAMILAH SYAFAWATI YAACOB

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.