Date extract as an alternative natural medium for cultivating Streptomyces sp. SA32 and enhancing its antifungal activity
DOI:
https://doi.org/10.2298/ABS250728030BKeywords:
Natural culture medium, conventional media, antifungal compounds, date extract, StreptomycesAbstract
Paper description:
- This study examines the use of low-quality date extract as a medium for cultivating Streptomyces SA32 and producing antifungal compounds. The idea emerged in response to the high cost of conventional media and the need for sustainable alternatives.
- Growth and antifungal compound production of a Streptomyces SA32 strain on low-quality date extract vs standard culture media was compared.
- The date extract medium was more effective in supporting growth and metabolite production.
- This work supports the use of low-quality date extract as an alternative culture medium, particularly in date-producing regions such as southern Algeria.
Abstract: Our study investigated the use of a natural medium, date extract, which has a low market value, to cultivate a bacterial strain that produces antifungal compounds. Strain SA32 was isolated by the method of suspension dilution using chitin medium from Algerian Saharan soil. Analysis of its 16S rRNA indicated that it belongs to the genus Streptomyces, showing a 99.52% identity with Streptomyces griseoflavus LMG 19344T. The kinetics of antifungal activity production on three solid media, date extract, ISP-2 (International Streptomyces Project-2), and Bennett, revealed that maximal production occurred on day 4 for ISP-2 and Bennett, and on day 5 for date extract. In broth media, maximal antifungal activities were observed on the 4th day of incubation for all three media. The average inhibition zones were larger in the date extract than in ISP-2 and Bennett, regardless of whether the medium was liquid or solid. The antifungal activity was detected only in the n-butanol fraction. HPLC analysis of the crude butanolic extract identified one fraction displaying activity against Aspergillus carbonarius. These findings indicated that the date extract can serve as a natural alternative to conventional culture media to produce Streptomyces sp. SA32 antifungals.
Downloads
References
Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect. 2020;34:100622. https://doi.org/10.1016/j.nmni.2019.100622
Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature. 2005;434:1130-4. https://doi.org/10.1038/nature03461
Prescott LM, Willey JM, Sherwood LM, Woolverton CJ. Microbiologie. 5th ed. Louvain-la-Neuve : De Boeck Supérieur; 2018. 1120 p.
Meenakshi S, Hiremath J, Meenakshi MH, Shivaveerakumar S. Actinomycetes: isolation, cultivation and its active biomolecules. J Pure Appl Microbiol. 2023;18(1):118-43. http://doi.org/10.22207/JPAM.18.1.48
Atmanto YKAA, Paramita K, Handayani I. Culture media. Int Res J Modern Eng Technol Sci 2022;4:2213-25.
Wang Z, Yu Z, Zhao J, Zhuang X, Cao P, Guo X, Liu C, Xiang, W. Community composition, antifungal activity and chemical analyses of ant-derived actinobacteria. Front Microbiol. 2020;11(201):1-12. http://doi.org/10.3389/fmicb.2020.00201
Geris R, Teles de Jesus VE, Ferreira da Silva A, Malta M. Exploring culture media diversity to produce fungal secondary metabolites and cyborg cells. Chem Biodivers. 2024;21(3):e202302066. https://doi.org/10.1002/cbdv.202302066
Murniasih T, Mardiana NA, Untari F, Triwibowo J, Bayu A. Optimization of carbon and nitrogen source to enhance antibacterial activity from a sponge-derived Bacillus tequilensis. Turk J Fish Aquat Sci. 2024;24(2):TRJFAS24222. https://doi.org/10.4194/TRJFAS24222
Oledibe OJ, Enweani-Nwokelo IB, Okigbo RN, Achugbu AN. Formulation of fungal media from local plant materials. Adv Gut Microbiome Res. 2023;1:1-4. https://doi.org/10.1155/2023/1711026
Dos Santos FP, Magalhães DCMM, Nascimento JDS, Ramos GLPA. Use of products of vegetable origin and waste from hortofruticulture for alternative culture media. J Food Sci Technol. 2022;42:1-4.
https://doi.org/10.1590/fst.00621
Zhang J, Bu Y, Zhang C, Yi H, Liu D, Jiao J. Development of a low-cost and high-efficiency culture medium for bacteriocin lac-b23 production by Lactobacillus plantarum j23. Biology. 2020;9(7):1-11. https://doi.org/10.3390/biology9070171
Hayakawa M, Nonomura H. Humic acid vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment. Technol. 1987;65(5):501-9. https://doi.org/10.1016/0385-6380(87)90108-7
Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol. 1966;16:313-40. https://doi.org/10.1099/00207713-16-3-313
Waksman SA. The actinomycetes Vol 2: classification, identification and descriptions of genera and species. The Williams & Wilkins Co, Baltimore; 1961. 363p. https://doi.org/10.5694/j.1326-5377.1962.tb67171.x
Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. Rapid identification between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. J Appl Microbiol. 1964;12(5):421-3. https://doi.org/10.1128/am.12.5.421-423.1964
Lechevalier HA, Lechevalier MP. Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In: Prauser H, editor. The actinomycetales. Gustav Fischer Verlag; 1970. p. 311-6.
Minnikin DE, Patel PV, Alshamahony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol. 1977;27(2):104-17. https://doi.org/10.1099/00207713-27-2-104
Locci R. Streptomycetes and related genera. In: Williams ST, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Baltimore: The Williams and Wilkins co; 1989. p. 2452-92
Liu D, Coloe S, Baird R, Pedersen J. Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol. 2000;38(1):471. https://doi.org/10.1128/jcm.38.1.471-471.2000
Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-Specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80.
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Rascón-Careaga A, Corella-Madueño MAG, Pérez-Martínez CJ, García-Rojas AM, Souflé-Vásquez SZ, García-Moroyoqui MT, Córdoba-Beltrán LJ, Cáñez-Carrasco MG, García-Alegría AM. Validation and Estimation of Uncertainty for a Glucose Determination Method GOD-PAP Using a Multi-calibrator as Reference. MAPAN. 2021;36:269-78. https://doi.org/10.1007/s12647-021-00441-5
Sewwandi SDC, Arampath PC, Silva ABG, Jayatissa R. Determination and comparative study of sugars and synthetic colorants in commercial branded fruit juice products. J Food Qual. 2020;2020(1):7406506. https://doi.org/10.1155/2020/7406506
Mortensen AB, Wallin H, Appelqvist LA, Everitt G, Gref CG, Jacobsen J, Jensen K, Jepsen OM, Johansen IL, Julshamn K. Gravimetric determination of ash in foods: NMKL collaborative study. J Assoc Off Anal Chem. 1989;72(3):481-3. https://doi.org/10.1093/jaoac/72.3.481
Saez-Plaza P, Navas MJ, Wybraniec S, Michałowski T, Asuero AG. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013;43:224-72. https://doi.org/10.1080/10408347.2012.751787
Hewavitharana GG, Perera DN, Navaratne SB, Wickramasinghe I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab J Chem. 2020;13(8):6865-75. https://doi.org/10.1016/j.arabjc.2020.06.039
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9. https://doi.org/10.1016/j.jpha.2015.11.005
Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749-55. https://doi.org/10.1086/647952
Driche EH, Badji B, Bijani C, Belghit S, Pont F, Mathieu F, Zitouni A. A new Saharan strain of Streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria. Curr Microbiol. 2022;79(10):1-10. https://10.1007/s00284-022-02994-3
Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams S. Bergey’s manual of determinative bacteriology, 9th edition. The Williams and Wilkins co. Baltimore; 1994. 1257p.
Jain R, Zaidi KI, Parveen N, Saxena A. Optimization of Cultural Conditions for the Production of Antibiotic by Streptomyces sp. VRY-1. RRST. 2011;3(10):81-7.
Bhavana M, Talluri VSSL, Kumar KS, Rajagopal SV. Optimization of culture conditions of streptomyces carpaticus (mtcc-11062) for the production of antimicrobial compound. Int J Pharm Pharm Sci. 2014;6(8):281-5.
Diana RM, Monserrat MR, Alba RR, Beatriz RV, Romina RS, Sergio SE. Dissecting the role of the two Streptomyces peucetius var. caesius glucokinases in the sensitivity to carbon catabolite repression. J Ind Microbiol Biotechnol. 2021;48:9-10. https://doi.org/10.1093/jimb/kuab047
Singh LS, Mazumder S, Bora TC. Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J Mycol Med. 2009;19(4)225-33. https://doi.org/10.1016/j.mycmed.2009.07.006
Hu Z, Weng Q, Cai Z, Zhang H. Optimization of fermentation conditions and medium components for chrysomycin a production by Streptomyces sp. 891-B6. BMC Microbiol. 2024;6:24(1):120. https://doi.org/10.1186/s12866-024-03258-9
Ju Y, Son KH, Jin C, Hwang BS, Park DJ, Kim CJ. Statistical optimization of culture medium for improved production of antimicrobial compound by Streptomyces rimosus AG-P1441. Food Sci Biotechnol. 2017;27(2):581-90. https://doi.org/10.1007/s10068-017-0257-1
Tahir S, Putri WRP, Wardani AK, Sunaryanto R. Fermentation medium optimization of Streptomyces sp. as an antifungal agent against the Ganoderma boninensis pathogen in oil palm. Indones J Biotechnol. 2023;28(4)216. https://doi.org/10.22146/ijbiotech.82396
New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 2014;12(1):e1001764. https://doi.org/10.1371/journal.pbio.1001764
Martínez ZE, Ríos-Muniz DE, Gomez-Cano J, Montoya-Hidalgo AC, Ochoa-Solorzano RE. Antibacterial activity of Streptomyces sp. Y15 against pathogenic bacteria and evaluation of culture media for antibiotic production. Tip Rev Espec Cienc Quím Biol. 2022;25:1-12. https://doi.org/10.22201/fesz.23958723e.2022.415
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the enhancement of secondary metabolite production via biosynthesis gene cluster regulation in Aspergillus oryzae. J Fungi. 2024;10(5):1-17. https://doi.org/10.3390/jof10050312
Fourati BFL, Fotso S, Ben Ameur MR, Mellouli L, Laatsch H. Purification and structure elucidation of antifungal and antibacterial activities from a newly isolated Streptomyces sp. US80 strain. Res Microbiol. 2005;156(3):341-7. https://doi.org/10.1016/j.resmic.2004.10.006
Mohammadzai I, Shah Z, Khan ZH, Khan S. Mineral composition of date palm fruit and pit by atomic absorption spectrophotometry. J Chem Soc Pak. 2010;32(1):87-90.
Chergui D, Akretche-Kelfat S, Lamoudi L, Al-Rshaidat M, Boudjelal F, Ait-Amar H. Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi J Biol Sci. 2021;28(12):7134-41. https://doi.org/10.1016/j.sjbs.2021.08.013
Chauhan K, Trivedi U, Patel KC. Statistical screening of medium components by Placket-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour Technol. 2007;98(1):98-103. https://doi.org/10.1016/j.biortech.2005.11.017
Tang ZX, Shi LE, Aleid SM. Date and their processing byproducts as substrates for bioactive compounds production. Braz Arch Biol Technol. 2014;57(5):706-13. https://doi.org/10.1590/S1516-89132014005000017
Hamad SH, Aleid SM, Elgorashe RE, Babker MY. Production, separation, and antimicrobial activity assessment of pristinamycin produced using date fruit extract as substrate. J Adv Pharm Technol Res. 2022;13(3):161-5. https://doi.org/10.4103/japtr.japtr_40_22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Said Belghit, Boubekeur Badji, Andrea Vannini, El Hadj Driche, Zineddine Benbekhti, Abdelghani Zitouni, Noureddine Bouras

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.