Effects of different insecticides on the antioxidative defense system of the European Corn Borer (Ostrinia nubilalis Hübner) (Lepidoptera: Crambidae) larvae

Authors

  • Filip Franeta Institute of Field and Vegetable Crops, 21000 Novi Sad
  • Dejan Mirčić State University of Novi Pazar, Department of Biomedical Sciences, Vuka Karadžića bb, 36300 Novi Pazar http://orcid.org/0000-0003-3499-1597
  • Dajana Todorović Institute for Biological Research “Siniša Stanković”, University of Belgrade, 142 Bulevar despota Stefana, 11060 Belgrade http://orcid.org/0000-0003-1796-9312
  • Željko Milovac Institute of Field and Vegetable Crops, 21000 Novi Sad
  • Nihat Granica State University of Novi Pazar, Department of Biomedical Sciences, Vuka Karadžića bb, 36300 Novi Pazar
  • Saša Obradović State University of Novi Pazar, Department of Chemical and Technological Sciences, Vuka Karadžića bb, 36300 Novi Pazar
  • Vesna Perić Mataruga Institute for Biological Research “Siniša Stanković”, University of Belgrade, 142 Bulevar despota Stefana, 11060 Belgrade http://orcid.org/0000-0002-2899-7418

Keywords:

indoxacarb, chlorantraniliprole, lambda cyhalothrin, Ostrinia nubilalis larvae, oxidative stress

Abstract

Paper description:

  • Ostrinia nubilalis is one of the most damaging insect pests of maize with a significant impact on crop production.
  • Measuring the differences in the effects of the insecticides on the antioxidative system helps in predicting the speed of insect adaptation to insecticide doses, which allows for timely substitution of the applied insecticides.
  • This is the first examination of the effects of indoxacarb, chlorantraniliprole and the combination of chlorantranilprole and lambda cyhalothrin on the antioxidative system in a sample population of O. nubilalis from Serbia.

Abstract: The European corn borer (Ostrinia nubilalis) is one of the most important insect pests of maize, and has a significant impact on the production of this crop. In this work, we examined the effects of different insecticides on the antioxidative defense system of O. nubilalis larvae. The experimental setup consisted of a completely randomized block design with 4 replicates. Four experimental groups were formed as follows: control (C), indoxacarb (250 mL ha-1), chlorantraniliprole (100 mL ha-1) and the chlorantraniliprole+lambda cyhalothrin (200 mL ha-1) group. Larvae from maize stems were collected 20 days after insecticide application and the whole larvae were homogenized. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST), and the total amount of free SH groups were assessed. Comparison of the experimental groups showed that indoxacarb significantly affected the activities of GST, GPx and the total amount of free SH groups, while chlorantraniliprole significantly affected the activities of SOD, CAT, GST and the total amount of free SH groups, while chlorantraniliprole+lambda cyhalothrin significantly affected the activities of CAT, GST and the total amount of free SH groups. The results show that exposure to insecticides considerably affects the antioxidative defense components of the European corn borer larvae, especially chlorantraniliprole (T2).

https://doi.org/10.2298/ABS180701042F

Received: July 1, 2018; Revised: September 1, 2018; Accepted: September 10, 2018; Published online: October 2, 2018

How to cite this article: Franeta F, Mirčić D, Todorović D, Milovac Ž, Granica N, Obradović S, Perić-Mataruga V. Effects of different insecticides on the antioxidative defense system of the European corn borer (Ostrinia nubilalis Hübner) (Lepidoptera: Crambidae) larvae. Arch Biol Sci. 2018;70(4):765-73.

Downloads

Download data is not yet available.

References

Crawford HG, Spencer GJ. The European com borer (Pyrausta nubilalis Hubn.): life history in Ontario. J econ Em. 1922;15:222-6.

Butron A, Revilla P, Sandoya G, Ordas A, Malvar RA. Resistance to reduce corn borer damage in maize for bread, in Spain. Crop Prot. 2009;28:134-8.

Magg T. Resistance of Maize (Zea mays L.) Against the European Corn Borer (Ostrinia nubilalis Hb.) and its Association with Mycotoxins Produced by Fusarium spp. [dissertation]. [Stuttgart-Hohenheim]: Fakultät Agrarwissenschaften der Universität Hohenheim; 2004. 73p.

Meissle M, Mouron P, Musa T, Bigle F, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Palinkas Z, Dorner Z, Van der Weide R, Groten J, Czembor E, Adamczyk J, Thibord JB, Melander B, Cordsen Nielsen G, Poulsen RT, Zimmermann O, Verschwele A, Oldenburg E. Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol. 2010;134:357-75.

FAOSTAT - Food and Agriculture Organization of the United Nations [Internet]. Used filters: Years: 2014, 2015, 2016; production/crops: Countries or regions: Serbia; Elements: area harvested; items aggregated: maize and maize green. 2018 - [cited 2018 July 11]. Available from: http://faostat3.fao.org/download/Q/QC/E.

Musser FR, Shelton AM. Bt sweet corn and selective insecticides: impacts on pests and predators. J Econ Entomol. 2003;96:71-80.

Demirci Ö, Güven K, Asma D, Ögüt S, Ugurlu P. Effects of endosulfan, thiamethoxam and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicol Environ Saf. 2018;147:749-58.

Wing KD, Sacher M, Kagaya Y, Tsurubuchi Y, Mulderig L, Connair M, Schnee M, Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot. 2000;19:537-45.

Dinter A, Wiles JA. Safety of the new DuPont insecticide ‘‘Indoxacarb’’ to beneficial arthropods: an overview. Bull OILB/SROP. 2000;23:149-56.

Lahm GP, Selby TP, Freudenberger JH, Stevenson TM, Myers BJ, Seburyamo G, Smith BK, Flexner L, Clark CE, Cordova D. Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators. Bioorg Med Chem Lett. 2005;15:4898-906.

Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, Bellin CA, Dubas CM, Smith BK, Hughes KA, Hollingshaus JG, Clark CE, Benner EA. RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg Med Chem Lett. 2007;17:6274-9.

Lee CY. Sublethal effects of insecticide on longevity, fecundity, and behaviour of insect pests: a review. J Biosci. 2000;11:107-12.

Willemin ME, Kadar A, De Sousa G, Leclerc E, Rahmani R, Brochot C. In vitro human metabolism of permethrin isomers alone or as a mixture and the formation of the major metabolites in cryopreserved primary hepatocytes. Toxicol In Vitro. 2015;29:803-12.

Imamura L, Hasegawa H, Kurashina K, Hamanishi A, Tabuchi A, Tsuda M. Repression of activity- dependent c-fosandbrain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanyingadecreasein Ca(2þ) influx intoneurons. J Pharmacol Exp Ther. 2000;295:1175-82.

Mazurek J, Hurej M, Jackowski J. The effectiveness of selected chemical and biological insecticides in control of european corn borer (Ostrinia nubilalis Hbn) on sweet corn. J Plant Prot Res. 2005;45:41-7.

Halliwell B, Gutterridge JMC. Free Radicals in Biology and Medicine. 4th ed. New York: Oxford University Press; 2007. 851p.

Ojha A, Yaduvanshi SK, Srivastava N. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic Biochem Physiol. 2011;99:148-56.

Ki YW, Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells in response to fipronil. Toxicol Lett. 2012;211:18-28.

Margarido TC, Felício AA, De Cerqueira Rossa-Feres D, De Almeida EA. Biochemical biomarkers in Scinax fuscovarius tadpoles exposed to a commercial formulation of the pesticide fipronil. Mar Environ Res. 2013;91:61-7.

Ahmad S, Pardini RS. Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radic Biol Med. 1990;8:401-13.

Ahmad S, Duval DL, Weinhold LC, Pardini RS. Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem. 1991;21:563-72.

Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65-72.

Ahmad S, Beilsen MA, Pardini RS. Glutathione peroxidase activity in insects: a reassessment. Arch Insect Biochem Physiol. 1989;12:31-49.

Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Met Rev. 2000;32:302-26.

Mistra HP, Fridovich I. The role of superoxide anion in the antioxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170-5.

Beutler E. Catalase. In: Beutler E, editor. Red cell metabolism, a manual of biochemical methods. Philadelphia: Grune and Stratton; 1982.p.105-6.

Glatzle D, Vuilleumier JP, Weber F, Decker K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 1974;30:565-638.

Habig WH, Pabst MJ, Jakoby WB. Gluthatione-S-transferases. J Biol Chem. 1974;249:7130-9.

Tamura M, Oschino N, Chance B. Some characteristics of hydrogen and alkyl-hydroperoxides metabolizing systems in cardiac tissue. J Biochem. 1982;92:1019-31.

Ellman CL, Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70-7.

Bradford MM. A rapid and sensitive method for the quantity of microgram quantities of protein utilizing the principle of protein – dye binding. Anal Biochem. 1976;72:248-54.

Sokal RS, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. San Francisco, USA: W H Freeman; 1981.

Mason CE, Rice ME, Calvin DD, Van Duyn JW, Showers WB, Hutchison WD, Witkowski JF, Higgins RA, Onstad DW, Dively GP. European corn borer: ecology and management. Ames (Iowa): North Central Region: Iowa State University; 1996. 57 p. (NCR; No. 327).

Yang HY, Lee TH. Antioxidant enzymes as redox-based biomarkers: a brief review. BMBR. 2015;48:200-8.

National Registration Authority for Agricultural and Veterinary Chemicals Internet. Evaluation of the new active INDOXACARB in the product DuPont Steward Insecticide. 2000- cited 2018 Sep 8. Available from: https://apvma.gov.au/sites/default/files/publication/13826-prs-indoxacarb.pdf

United States Environmental Protection Agency (USEPA) Internet. Indoxacarb conditional registration. 2000- cited 2018 Sep 8. Available from:

https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-067710_30-Oct-10.pdf

Commission Directive 2006/10/EC of 27 January 2006 amending Council Directive 91/414/EEC to include for chlorfenuron and indoxacarb as active substances. Official Journal of the European Union. 2006;L25/24.

Silver K, Soderlund DM. Action of pyrazoline-type insecticides at neuronal target sites. Pestic Biochem Physiol. 2005.81:136-43.

Mirhaghparast SK, Zibaee A, Jalali Sendi J, Hoda H, Fazeli-Dinan M. Immune and metabolic responses of Chilo suppressalis Walker (Lepidoptera: Crambidae) larvae to an insect growth regulator, hexaflumuron. Pestic Biochem Physiol. 2015;125:69-77.

Vojoudi S, Saber M, Gharekhani G, Esfandiari E. Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Prot. 2017;91:101-7.

van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003;2:57-149.

Vasileiadis VP, Veres A, Loddo D, Masin R, Sattin M, Furlan L. Careful choice of insecticides in integrated pest management strategies against Ostrinia nubilalis (Hübner) in maize conserves Orius spp. in the field. Crop Prot. 2017;97:45-51.

Zhang RM, Dong JF, Chen JH, Qinge JI, Cui JJ. The sublethal effects of chlorantraniliprole on Helicoverpa armigera (Lepidoptera: Noctuidae). J Integrat Agricult. 2013;12(3):457-66.

Lai TC, Su JY. Effects of chlorantraniliprole on development and reproduction of beet armyworm Spodoptera exigua (Hübner). J Pest Sci. 2011;84:381-6.

Han WS, Zhang SF, Shen FY, Liu M, Ren CC, Gao XW. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci. 2012;68:1184-90.

Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol. 2015;5:472-84.

Güngördü A, Uçkun M, Yoloğlu E. Integrated assessment of biochemical markers in premetamorphic tadpoles of three amphibian species exposed to glyphosate- and methidathion- based pesticides in single and combination forms. Chemosphere. 2016;144:2024-35.

Bacchetta C, Rossi AS, Ale A, Campana M, Parma J, Cazenave J. Combined toxicological effects of pesticides: a fish multibiomarker approach. Ecol Indic. 2014;36:532-8.

Mahmoud N, Dellali M, Aissa P, Mahmoudi E. Acute toxicities of cadmium and permethrin on the pre-spawning and post-spawning phases of Hexaplex trunculus from Bizerta Lagoon, Tunisia. Environ Monit Assess. 2012;184:5851-61.

Wang X, Martinez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martinez M, Rodrigez JL, Martinez-Larranaga MR, Anadon A, Yuan Z. Permethrin-induced oxidative stress and toxicity and metabolism, a review. Environ Res. 2016;149:86-104.

Han JB, Li GQ, Wan PJ, Zhu TT, Meng QW. Identification of glutathione S- transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pest Biochem Physiol. 2016;133:26-34.

Nehare S, Moharil MP, Ghodki BS, Lande GK, Bisane KD, Thakare AS, Barkhade UP. Biochemical analysis and synergistic suppression of indoxacarb resistance in Plutella xylostella L. J Asia-Pacific Entomol. 2010;13:91-5.

Zhang S, Zhang X, Shen J, Li D, Wan H, You H, Li J. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pest Biochem Physiol. 2017;140:85-9.

Downloads

Published

2018-12-04

How to Cite

1.
Franeta F, Mirčić D, Todorović D, Milovac Željko, Granica N, Obradović S, Perić Mataruga V. Effects of different insecticides on the antioxidative defense system of the European Corn Borer (Ostrinia nubilalis Hübner) (Lepidoptera: Crambidae) larvae. Arch Biol Sci [Internet]. 2018Dec.4 [cited 2022Aug.9];70(4):765-73. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/3128

Issue

Section

Articles

Most read articles by the same author(s)