Role of adenosine triphosphate and protein kinase A in the force-frequency relationship in isolated rat cardiomyocytes




adenosine triphosphate, protein kinase A, frequency, contraction, Ca2


Paper description:

  • There is insufficient information about the force-frequency relationship in isolated cardiomyocytes and the available information is contradictory. We investigated the force-frequency relationship in contraction and the reasons for the conflicting results.
  • Contraction and Ca2+ transients were recorded at 1, 2, 4 Hz excitation frequencies.
  • The increase in frequency caused a decrease in the amplitude of contraction, a prolongation of the relaxation time, a slowdown in the relaxation rate, and an increase in the diastolic Ca2+
  • Energy deficiency and lack of β-adrenergic system regulation may play a role in these changes.

Abstract: The physiological heart rate of rodents is around 4-6 Hz, although a stimulus frequency of 1 Hz is generally used in isolated cardiomyocytes to study changes in the contraction-relaxation cycle in cardiac muscle physiology and pathophysiology. Our study investigated the contraction parameters in isolated cardiomyocytes at 1, 2 and 4 Hz stimulation, and the roles of ATP and protein kinase A (PKA) in the force-frequency relationship in isolated cardiomyocytes. The contraction of the cell and intracellular Ca2+ changes were recorded simultaneously during cell stimulation by applying pulses of 6-8 V amplitude with frequencies of 1, 2 and 4 Hz. The increase in stimulus frequency caused a significant decrease in the percentage of shortening, relaxation times, slowing of the relaxation rate, and a significant increase in diastolic Ca2+ levels, but had no effect on the contraction rate and Ca2+ transients. Administration of ATP and N6-benzoyladenosine-3ʹ-5ʹ-cyclic monophosphate (6-BNZ-cAMP) caused an increase in contraction amplitude and speed which were proportional to the stimulus frequency but had no effect on the relaxation times. The experimental results show that the force-stimulus frequency has a negative correlation in isolated myocytes and that energy metabolism and the β-adrenergic system may be responsible for this relationship.


Download data is not yet available.


Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol. 2011;51(3):288-98.

Franzoso M, Zaglia T, Mongillo M. Putting together the clues of the everlasting neuro-cardiac liaison. Biochim Biophys Acta - Mol Cell Res. 2016;1863(7):1904¬¬-15.

Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacological Research. 2015;101:30-40.

Queen LR, Ferro A. β-Adrenergic receptors and nitric oxide generation in the cardiovascular system. Cell Mol Life Sci. 2006;63(9):1070-83.

Cokkinos D V. Introduction to Translational Cardiovascular Research. Cokkinos D V., editor. Introduction to Translational Cardiovascular Research. Cham: Springer International Publishing; 2015.

Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiologic Rev. 2005;85(3):1093-129.

Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiologic Rev. 1992;72(4):881-924.

Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007;356:1140-51.

Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603-16.

Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177(3):754-63.

Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res. 2010;88(1):40-50.

Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ Res. 2013;113(6):739-53.

Mackiewicz U, Lewartowski B. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase. J Physiol Pharmacol. 2006;57(1):3-15.

Bugenhagen SM, Beard DA. Computational analysis of the regulation of Ca 2+ dynamics in rat ventricular myocytes. Phys Biol. 2015;12(5):056008.

Pinz I, Zhu M, Mende U, Ingwall JS. An Improved Isolation Procedure for Adult Mouse Cardiomyocytes. Cell Biochem Biophys. 2011;61(1):93-101.

Lim CC, Apstein CS, Colucci WS, Liao R. Impaired Cell Shortening and Relengthening with Increased Pacing Frequency are Intrinsic to the Senescent Mouse Cardiomyocyte. J Mol Cell Cardiol. 2000;32(11):2075-82.

Fauconnier J. Ca2+ current-mediated regulation of action potential by pacing rate in rat ventricular myocytes. Cardiovasc Res. 2003;57(3):670-80.

Ozturk N, Yaras N, Ozmen A, Ozdemir S. Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr. 2013;45(4): 343-52.

Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75(3):434-42.

Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D. Chronic Unloading by Left Ventricular Assist Device Reverses Contractile Dysfunction and Alters Gene Expression in End-Stage Heart Failure. Circulation. 2000;102(22):2713-9.

Mubagwa K, Lin W, Sipido K, Bosteels S, Flameng W. Monensin-induced Reversal of Positive Force-Frequency Relationship in Cardiac Muscle: Role of Intracellular Sodium in Rest-dependent Potentiation of Contraction. J Mol Cell Cardiol. 1997;29(3):977-89.

Milani-Nejad N, Brunello L, Gyorke S, Janssen PML. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae. J Muscle Res Cell Motil. 2014;35(3-4):225-34.

Layland J, Kentish JC. Positive force- and [Ca 2+ ] i -frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Physiol Circ Physiol. 1999;276(1):H9-18.

Coutu P, Metzger JM. Optimal Range for Parvalbumin as Relaxing Agent in Adult Cardiac Myocytes: Gene Transfer and Mathematical Modeling. Biophys J. 2002;82(5):2565-79.

Ohtsuka T, Suzuki M, Hamada M, Hiwada K. Cardiomyocyte Functions Couple with Left Ventricular Geometric Patterns in Hypertension. Hypertens Res. 2000;23(4):345-51.

Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care. 2009;13(1):R14.

Liao X, He J, Ma H, Tao J, Chen W, Leng X, Mai W, Zhen W, Liu J, Wang LAngiotensin-converting enzyme inhibitor improves force and Ca 2+ -frequency relationship in myocytes from rats with hart failure. Acta Cardiol. 2007;62(2):157-62.

Paterek A, Kępska M, Kołodziejczyk J, Mączewski M, Mackiewicz U. The effect of pacing frequency on the amplitude and time-course of cardiomyocyte shortening in isolated rat cardiomyocytes. Post N Med. 2016;XXIX(12B):9-14.

Freeman GL, Little WC, O'Rourke RA. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res. 1987;61(3):455-64.

Ross J. Adrenergic regulation of the force-frequency effect. In: Heart rate as a determinant of cardiac function. Heidelberg: Steinkopff; 2000. p. 155-65.

Kolwicz SC, Purohit S, Tian R. Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circ Res. 2013;113(5):603-16.

Woo SH, Trinh TN. P2 receptors in cardiac myocyte pathophysiology and mechanotransduction. Int J Mol Sci. 2021;22(1):251.

Hopkins S V. The action of ATP in the guinea-pig heart. Biochem Pharmacol. 1973;22(3):335-9.

Hollander PB, Webb L. Effects of Adenine Nucleotides on the Contractility and Membrane Potentials of Rat Atrium. Circ Res. 1957;5(4):349-53.

Fleetwood G, Gordon JL. Purinoceptors in the rat heart. Br J Pharmacol. 1987;90(1):219-27.

Vassort G. Adenosine 5′-Triphosphate: a P2-Purinergic Agonist in the Myocardium. Physiol Rev. 2001;81(2):767- 806.

Dorigo P, Gaion RM, Maragno I. Negative and positive influences exerted by purine compounds on isolated guinea-pig atria. J Auton Pharmacol. 1988;8(3):191-6.

Froldi G, Pandolfo L, Chinellato A, Ragazzi E, Caparrotta L, Fassina G. Dual effect of ATP and UTP on rat atria: which types of receptors are involved? Naunyn-Schmiedeberg's Arch Pharmacol. 1994;349(4):381-6.

Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol. 2017;595(12):3919-30.

Shen MJ, Zipes DP. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circ Res. 2014;114(6):1004-21.

Gordan R, Gwathmey JK, Xie L-H. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204.

Lissandron V, Zaccolo M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling. J Muscle Res Cell Motil. 2006;27(5-7):399-403.




How to Cite

Ozturk N, Erkan O, Uslu S, Ozdemir S. Role of adenosine triphosphate and protein kinase A in the force-frequency relationship in isolated rat cardiomyocytes. Arch Biol Sci [Internet]. 2023Apr.3 [cited 2024May24];75(1):47-56. Available from: