Diversity of fungi isolated from the carapace of the European pond turtle (Emys orbicularis, L. 1758) in South Banat, Serbia
DOI:
https://doi.org/10.2298/ABS250410015SKeywords:
Chelonia, fungi, turtle carapace, pathogensAbstract
Paper description:
- Fungal diseases of Emys orbicularis or other biotic interactions between fungi and European pond turtles have not been published.
- A combination of microscopy, culture-based methods, and molecular barcoding were used to study the mycobiota associated with the pond turtle shell.
- Fungal diversity, comprised of members of Aureobasidium, Cladosporium, Curvularia, Didymella, Microsphaeropsis, Pseudopithomyces, Naganishia, Rhodotorula, and Mucor genera, is documented on the pond turtle shell.
- This work contributes to the knowledge of the mycobiota found on the chelonian carapace. Ecological investigations showed the presence of possible animal diseases previously documented in freshwater environments.
Abstract: This study aimed to isolate and identify a fungal community on the carapace of the European pond turtle (Emys orbicularis) and to discuss their potential role as constituents of the turtle mycobiome. The study was conducted during the summer of 2020 within the special nature reserve Deliblato Sands (Deliblatska Peščara), situated in northern Serbia. We used a direct microscopy technique along with culture-based methods and molecular barcoding of the internal transcribed spacer (ITS) region. A plethora of fungal spores were documented as constituents of the biofilm present on the carapace surfaces. A total of 12 fungal isolates from the E. orbicularis carapace were identified, belonging to Alternaria, Aureobasidium, Cladosporium, Curvularia, Didymella, Microsphaeropsis, Pseudopithomyces, Naganishia, Rhodotorula, and Mucor genera. Ecological analyses showed that the majority of documented fungal species originated from terrestrial and aquatic environments, and many could be regarded as potential chelonian pathogens. The study presents pioneering research on fungal dwellers of E. orbicularis in Serbia.
Downloads
References
Ren M, Lu J, Song Y, Zhu J, Lin L, Lu H, Wan Q, Jiang S. Comparison between high-pressure steam and vinegar stir-frying on grinding characteristics and nutrient components of turtle shells: Difference between carapace and plastron. J Food Compos Anal. 2024;114:106391. https://doi.org/10.1016/j.jfca.2024.106391
Nardoni S, Mancianti F. Mycotic diseases in chelonians. J Fungi. 2023;9(5):518. https://doi.org/10.3390/jof9050518
Alibardi L. Ultrastructural and immunohistochemical observations on the process of horny growth in chelonian shells. Acta Histochem. 2006;108(2):149–162. https://doi.org/10.1016/j.acthis.2006.02.003
Stupar M, Savković Ž, Breka K, Stamenković S, Krizmanić I, Vukojević J, Ljaljević Grbić M. A variety of fungal species on the green frogs’ skin (Pelophylax esculentus complex) in South Banat. Microb Ecol. 2023;86(2):859–871. https://doi.org/10.1007/s00248-022-02135-0
Woodburn DB, Miller AN, Allender MC, Maddox CW, Terio KA. Emydomyces testavorans, a new genus and species of onygenalean fungus isolated from shell lesions of freshwater aquatic turtles. J Clin Microbiol. 2019;57(2):e01128-18 https://doi.org/10.1128/jcm.00628-18
Woodburn DB, Kinsel MJ, Poll CP, Langan JN, Haman K, Gamble KC, Terio KA. Shell lesions associated with Emydomyces testavorans infection in freshwater aquatic turtles. Vet Pathol. 2021;58(3):578–586. https://doi.org/10.1177/0300985820985217
Sutton DA, Marín Y, Thompson EH, Wickes BL, Fu J, García D, Guarro J. Isolation and characterization of a new fungal genus and species, Aphanoascella galapagosensis, from carapace keratitis of a Galapagos tortoise (Chelonoidis nigra microphyes). Med Mycol. 2013;51(2):113–120. https://doi.org/10.3109/13693786.2012.701767
Smyth CW, Sarmiento-Ramírez JM, Short DP, Diéguez-Uribeondo J, O’Donnell K, Geiser DM. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLoS Pathog. 2019;15(5):e1007682. https://doi.org/10.1371/journal.ppat.1007682
Jacobson ER, Calderwood MB, Clubb SL. Mucormycosis in hatchling Florida softshell turtles. J Am Vet Med Assoc. 1980;177:835–837 https://doi.org/10.2460/javma.1980.177.09.835
Fritz U. Handbuch der Reptilien und Amphibien Europas, Band 3/IIIA Schildkröten (Testudines) I (Bataguridae, Testudinidae, Emydidae). Wiebelsheim, Germany: AULA-Verlag; 2001.
Carina Z, George-Ioan M, Dragoș V. Optimal body mass-length ratio during hibernation for Emys orbicularis (Linnaeus, 1758)—European pond turtle. Heliyon. 2021;7(7):e07489. https://doi.org/10.1016/j.heliyon.2021.e07607
Merleau LA, Lourdais O, Olivier A, Vittecoq M, Blouin-Demers G, Alliot F, Goutte A. Pesticide concentrations in a threatened freshwater turtle (Emys orbicularis): Seasonal and annual variation in the Camargue wetland, France. Environ Pollut. 2024;341:122903. https://doi.org/10.1016/j.envpol.2023.122903
Liuzzo M, Spada A, Facca C, Borella S, Malavasi S. Nesting habitat characteristics and predation patterns in the European pond turtle Emys orbicularis (L., 1758): Implications for management and conservation measures. Glob Ecol Conserv. 2024;52:e02975. https://doi.org/10.1016/j.gecco.2024.e02975
Schönbächler K, Olias P, Richard OK, Origgi FC, Dervas E, Hoby S, Veiga IB. Fatal spirorchiidosis in European pond turtles (Emys orbicularis) in Switzerland. Int J Parasitol Parasites Wildl. 2022;17:144-51. https://doi.org/10.1016/j.ijppaw.2022.01.004
Guz L, Nowakiewicz A, Puk K, Zięba P, Gnat S, Matuszewski Ł. Virulence and antimicrobial resistance pattern of Aeromonas spp. colonizing European pond turtles (Emys orbicularis) and their natural environment: First study from Poland. Animals. 2021;11(10):2772. https://doi.org/10.3390/ani11102772
Aleksić-Kovačević S, Vučićević M, Özvegy J, Jelisić S, Djurdjević B, Prodanov-Radulović J, Marinković D. Eight-year study of Haemogregarina stepanowi infection in poached European pond turtles (Emys orbicularis) held in Belgrade Zoo quarantine. Animals. 2023;13(15):2429. https://doi.org/10.3390/ani13152429
Josimović B, Pucar M. 2010. The strategic environmental impact assessment of electric wind energy plants: Case study ‘Bavanište’ (Serbia). Renew Energy. 35:1509–1519. https://doi.org/10.1016/j.renene.2009.12.005
Puzović S, Sekulić G, Stojnić N, Grubač B, Tucakov M. Important Bird Areas in Serbia. Belgrade: Ministry of Environment and Spatial Planning; 2009. p. 279. [Serbian]
Watanabe T. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. London, UK: CRC Press; 2002.
Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B, editors. Food and indoor fungi. 2nd ed. Utrecht, The Netherlands: Westerdijk Fungal Biodiversity Institute; 2019.
White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, NY, USA: Academic Press; 1990. p. 315-22.
Savković Ž, Stupar M, Unković N, Ivanović Ž, Blagojević J, Vukojević J, Ljaljević Grbić M. In vitro biodegradation potential of airborne Aspergilli and Penicillia. Sci Nat. 2019;106(3-4):8. https://doi.org/10.1007/s00114-019-1603-3
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. https://doi.org/10.1093/molbev/mst197
Kukhar E, Smagulova A, Kiyan V. Biological properties of Phoma macrostoma related to non-dermatophyte onychomycosis. Med Mycol Case Rep. 2020;27:55-8. https://doi.org/10.1016/j.mmcr.2020.01.005
Oliveira VFD, Funari AP, Taborda M, Magri ASGK, Levin AS, Magri MMC. Cutaneous Naganishia albida (Cryptococcus albidus) infection: A case report and literature review. Rev Inst Med Trop Sao Paulo. 2023;65:e60. https://doi.org/10.1590/S1678-9946202365060
Calabon MS, Hyde KD, Jones EG, Luo ZL, Dong W, Hurdeal VG, Zeng M. Freshwater fungal numbers. Fungal Divers. 2022;114(1):3-235. https://doi.org/10.1007/s13225-022-00503-2
El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater fungi as a source of chemical diversity: A review. J Nat Prod. 2021;84(3):898-916, https://dx.doi.org/10.1021/acs.jnatprod.0c01340J
Goh TK, Hyde KD. Cryptophiale multiseptata, sp. nov. from submerged wood in Australia, and keys to the genus. Mycol Res. 1996;100(8):999-1007. https://doi.org/10.1016/S0953-7562(96)80054-2
Seyedmousavi S, Guillot J, de Hoog GS. Phaeohyphomycoses, emerging opportunistic diseases in animals. Clin Microbiol Rev 2013;26(1):19-35. https://dx.doi.org/10.1128/CMR.00065-12
Joyner PH, Shreve AA, Spahr J, Fountain AL, Sleeman JM. Phaeohyphomycosis in a free-living eastern box turtle (Terrapene carolina carolina). J Wildl Dis. 2006;42(4):883-8. https://doi.org/10.7589/0090-3558-42.4.883
Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, Van West P. New insights into animal pathogenic oomycetes. Trends Microbiol. 2008;16(1):13-9. https://doi.org/10.1016/j.tim.2007.10.013
Blackwell WH, Letcher PM, Powell M. An oomycete parasitizing algae occurring on dorsal shells of turtles. Phytologia. 2013;95(1):34-41.
Leal-Sepúlveda V, Reyes-López MA, Camacho-Sánchez FY, Acosta-Sánchez HH, Zavala-Félix KA, Hart CE, Zavala-Norzagaray AA, Leal-Moreno R, Espinoza-Romo BA, Aguirre AA, Sainz-Henández JC, Ley-Quiñónez CP. Blood biochemistry reference values for nesting Kemp’s ridley turtles (Lepidochelys kempii) in Rancho Nuevo Sanctuary, Mexico. Estuar Coast Shelf Sci 2023;293:108488. https://doi.org/10.1016/j.ecss.2023.108488
Candan ED. Molecular identification of fungal isolates and hatching success of green turtle (Chelonia mydas) nests. Arch Microbiol. 2018;200:911-9. https://doi.org/10.1007/s00203-018-1496-0
Phillott AD, Parmenter CJ. The distribution of failed eggs and the appearance of fungi in artificial nests of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles. Aust J Zool. 2001;49(6):713-8. https://doi.org/10.1071/ZO00051
Sarmiento-Ramirez JM, Sim J, Van West P, Dieguez-Uribeondo J. Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J Mar Biol Assoc U K 2017;97(4):661-7. https://doi.org/10.1017/S0025315416001478
Mastrostefano AA, Frasca S Jr, Stacy BA, Wickes BL, Wiederhold NP, Cañete-Gibas CF, Stacy NI, Beck S, Tuxbury KA, Joblon MJ, Cavin JM, Weber ES III, Innis CJ. Clinical observations, identification, and antimicrobial susceptibility of fungi isolated from sea turtles with histologically confirmed mycotic infections: 20 cases, 2005–2020. J Herpetol Med Surg. 2024;34(1):53-69. https://doi.org/10.5818/JHMS-D-23-00007
Filek K, Vuković BB, Žižek M, Kanjer L, Trotta A, Di Bello A, Corrente M, Bosak S. Loggerhead sea turtles as hosts of diverse bacterial and fungal communities. Microb Ecol. 2024;87(1):1-16. https://doi.org/10.1007/s00248-024-02388-x
Flamant F, de Gentile L, Chermette R, Chabasse D, Bouchara JP. Flore fongique des lésions de la carapace des tortues terrestres de compagnie dans l’Ouest de la France. J Med Mycol. 2003;13:67-72.
Hunt TJ. Notes on diseases and mortality in testudines. Herpetologica. 1957;13:19-23.
Lozano J, Cunha E, Almeida C, Nunes M, Dias R, Vicente E, Sebastião D, Henriques S, de Carvalho LM, Paz-Silva A, Oliveira, M. Analyzing the safety of the parasiticide fungus Mucor circinelloides: first insights on its virulence profile and interactions with the avian gut microbial community. Microbiol Spectr. 2024;12(5):e04078-23. https://doi.org/10.1128/spectrum.04078-23
Morais PBD, Pimenta RS, Tavares IB, de Garcia V, Rosa CA. Yeasts occurring in surface and mouth cavity of two chelonian species, Podocnemis expansa Schweigger and P. unifilis Troschel (Reptilia: Chelonia: Pelomedusidae), in the Javaés River Border of Araguaia National Park in Brazil. Int J Microbiol. 2010;2010(1): 04524. https://doi.org/10.1155/2010/504524
Jones SC, Jordan WJ IV, Meiners SJ, Miller AN, Methven AS. Fungal spore dispersal by the eastern box turtle (Terrapene carolina carolina). Am Midl Nat. 2007;157(1):121-6. https://doi.org/10.1674/0003-0031(2007)157[121:FSDBTE]2.0.CO;2
Tuon FF, Costa SF. Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol. 2008;25(3):135-40. https://doi.org/10.1016/s1130-1406(08)70032-9
Dubey S, Pellaud S, Gindro K, Schuerch J, Golay J, Gloor R, Ghali K, Dubey O. Fungal infection in free-ranging snakes caused by opportunistic species. Emerg Anim Species. 2022;3:100001. https://doi.org/10.1016/j.eas.2022.100001

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Željko Dragan Savković, Miloš Stupar, Milica Ljaljević Grbić, Imre Krizmanić

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.