Identification and functional analysis of a testis‑biased gene encoding serine/arginine‑rich protein in silkworm, Bombyx mori

Authors

  • Li-Ying Zhang State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715
  • Juan Li School of Life, Southwest University, Chongqing 400715
  • Xingfu Zha 1. State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715; 2. Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715; 3. Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715 http://orcid.org/0000-0003-2085-5260

Keywords:

silkworm, spermatogenesis, serine/arginine-rich protein, lepidopteran‑specific gene, RNAi

Abstract

Paper description:

  • Major pests in agriculture and forestry belong to the lepidopteran insects. Genes involved in spermatogenesis are potential targets for pest control using the sterile‑male technique.
  • We identified a testis-biased gene BmRS-TS encoding Serine/Arginine-rich protein in the silkworm. BmRS-TS is a Lepidopteran-specific gene, which is predominantly expressed in silkworm testes and plays an important role in spermatogenesis.
  • The obtained results provide clues for understanding the mechanism of spermatogenesis in the silkworm, which can be used as a reference for other lepidopterans.


Abstract: Spermatogenesis is a fundamental process in sexual reproduction. In this study, we cloned a 716-bp cDNA of a testis-biased gene in Bombyx mori, named as BmRS-TS, which encodes a polypeptide of 164 amino acids, containing 26.7% arginine and serine residues. Sequence similarity analysis showed that BmRS-TS is a lepidopteran-specific gene. Results of RT-PCR and Western analysis revealed that BmRS-TS was expressed predominantly in the testis. Immunohistochemistry assay showed that the BmRS-TS protein was mostly located in primary spermatocytes. Moreover, knockdown of BmRS-TS by RNA interference (RNAi) showed that the morphology of the mature sperm was abnormal and that sperm bundles were broken up. Our results suggest that BmRS-TS plays an important role in silkworm spermatogenesis and provide some clues for understanding the mechanism that underlies spermatogenesis, which can be used as a reference for other lepidopterans.

https://doi.org/10.2298/ABS190616046Z

Received: June 16, 2019; Revised: July 24, 2019; Accepted: July 29, 2019; Published online: August 2, 2019

How to cite this article: Zhang L, Li J, Zha X. Identification and functional analysis of a testis‑biased gene encoding serine/arginine‑rich protein in silkworm, Bombyx mori. Arch Biol Sci. 2019;71(4):639-45.

Downloads

Download data is not yet available.

References

Alphey N, Bonsall MB. Genetics-based methods for agricultural insect pest management. Agric For Entomol. 2018;20(2):131-40.

Toshimori K, Iwashita T, Oura C. Cell junctions in the cyst envelope in the silkworm testis, Bombyx mori Linné. Cell Tissue Res. 1979;202(1):63-73.

Nyberg KG, Carthew RW. Out of the testis: biological impacts of new genes. Genes Dev. 2017;31(18):1825-6.

Li X, Yu H, Wang Y, Liu X, Liu Y, Qu J, Wang X. Roles of two Sox9 genes during gonadal development in Japanese Flounder: sex differentiation, spermatogenesis and gonadal function maintenance. Int J Mol Sci. 2018;19(2):E512.

Kazarian E, Son H, Sapao P, Li W, Zhang Z, Strauss JF, Teves ME. SPAG17 is required for male germ cell differentiation and fertility. Int J Mol Sci. 2018;19(4):E1252.

Kawamura N, Yamashiki N, Saitoh H, Sahara K. Peristaltic squeezing of sperm bundles at the late stage of spermatogenesis in the silkworm, Bombyx mori. J Morphol. 2000;246(2):53-8.

Osanai M, Nagaoka S. Adenine compounds in the male reproductive tract and the spermatophore of the silkmoth, Bombyx mori. Comp Biochem Phys B. 1992;102(1):49-55.

Yamashiki N, Kawamura N. Behaviors of nucleus, basal bodies and microtubules during eupyrene and apyrene spermiogenesis in the silkworm, Bombyx mori (Lepidoptera). Dev Growth Differ. 1997;39(6):715-22.

Polanska MA, Ciuk MA, Cymborowski B, Bebas P. Germ cell death in the testis and its relation to spermatogenesis in the wax moth, Galleria mellonella (Lepidoptera: Pyralidae), effects of facultative diapause. J Exp Zool Part A. 2005;303(11):1013-29.

Shimoda M, Kubo-Irie M, Ohta K, Irie M, Mohri H. Spermatogenesis in the testes of diapause and non-diapause pupae of the sweet potato hornworm, Agrius convolvuli (L.) (Lepidoptera: Sphingidae). Zool Sci. 2007;24(10):1036-44.

Mita K, Nenoi M, Morimyo M, Tsuji H, Ichimura S, Sawai M, Hamana K. Expression of the Bombyx mori beta-tubulin-encoding gene in testis. Gene. 1995;162(2):329-30.

Ota A, Kusakabe T, Sugimoto Y, Takahashi M, Nakajima Y, Kawaguchi Y, Koga K. Cloning and characterization of testis-specific tektin in Bombyx mori. Comp Biochem Phys B. 2002;133(3):371-82.

Miyagawa Y, Lee JM, Maeda T, Koga K, Kawaguchi Y, Kusakabe T. Differential expression of a Bombyx mori AHA1 homologue during spermatogenesis. Insect Mol Biol. 2005;14(3):245-53.

Zhang PJ, Cao GL, Sheng J, Xue RY, Gong CL. BmTGIF, a Bombyx mori homolog of Drosophila DmTGIF, regulates progression of spermatogenesis. PloS One. 2012;7(11):e47861.

Zhang PJ, Zhong JF, Cao GL, Xue RY, Gong CL. BmAly is an important factor in meiotic progression and spermatid differentiation in Bombyx mori (Lepidoptera: Bombycidae). J Insect Sci. 2014;14:188.

Chen K, Chen S, Xu J, Yu Y, Liu Z, Tan A, Huang Y. Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;109:43-51.

Sugahara R, Jouraku A, Nakakura T, Kusakabe T, Yamamoto T, Shinohara Y, Miyoshi H, Shiotsuki T. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori. PloS One. 2015;10(3):e0119429.

Sakai H, Oshima H, Yuri K, Gotoh H, Daimon T, Yaginuma T, Sahara K, Niimi T. Dimorphic sperm formation by Sex-lethal. Proc Natl Acad Sci U S A. 2019;116(21):10412-7.

Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;107:53-62.

Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H, Biology Analysis Group. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004;306(5703):1937-40.

Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol. 2007;8(8):R162.

Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, Zhu L. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci. 2008;15(5):405-13.

Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291-336.

Graveley BR. Sorting out the complexity of RS protein functions. RNA. 2000;6(9):1197-211.

Hastings ML, Krainer AR. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol. 2001;13(3):302-9.

Shepard PJ, Hertel KJ. The RS protein family. Genome Biol. 2009;10(10):242.

Rodger JC, Bedford JM. Separation of sperm pairs and sperm-egg interaction in the opossum, Didelphis virginiana. J Reprod Fertil. 1982;64(1):171-9.

Higginson DM, Pitnick S. Evolution of intra-ejaculate sperm interactions: do sperm cooperate? Biol Rev Camb Philos Soc. 2011;86(1):249-70.

Moore H, Dvorakova K, Jenkins N, Breed W. Exceptional sperm cooperation in the wood mouse. Nature. 2002;418(6894):174-7.

Higginson DM, Miller KB, Segraves KA, Pitnick S. Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci U S A. 2012;109(12):4538-43.

Downloads

Published

2019-12-19

How to Cite

1.
Zhang L-Y, Li J, Zha X. Identification and functional analysis of a testis‑biased gene encoding serine/arginine‑rich protein in silkworm, Bombyx mori. Arch Biol Sci [Internet]. 2019Dec.19 [cited 2022Aug.18];71(4):639-45. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/4382

Issue

Section

Articles