Two long non-coding RNAs, CAT179 and CAT1796, differentiate between benign prostate hyperplasia and prostate cancer

Authors

  • Nasim Ebrahimi Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
  • Farzane Amirmahani Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
  • Maryam Akbari Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
  • Azin Mosharaf Ghahfarokhi Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
  • Bahareh Hajihashemi Department of Microbiology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Michael R. Hamblin Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa

DOI:

https://doi.org/10.2298/ABS210629033E

Keywords:

prostate cancer, long non-coding RNAs (lncRNAs), benign prostate hyperplasia (BPH), CAT1796, biomarker

Abstract

Paper description:

  • Early diagnosis of prostate cancer is crucial for appropriate treatment selection.
  • Long non-coding RNAs (lncRNAs) are considered as potential biomarkers in cancers for early diagnosis.
  • The expression of lncRNAs CAT179 and CAT1796 is significantly higher in prostate cancer.
  • CAT1796 lncRNA could be a prostate cancer biomarker.

Abstract: Several long non-coding RNAs (lncRNAs) have recently emerged as potential biomarkers in cancer biology. In the present study, we examined the expression of four lncRNAs (CAT179, CAT1796, PRCAT47, and CAT1066) to evaluate their ability to discriminate prostate tumors from benign prostate hyperplasia (BPH). Expression of these four lncRNAs was examined in 20 prostate cancer and 20 benign prostate hyperplasia (BPH) samples, as well as in urine samples (11 BPH, and 11 cancer). Total RNA was extracted for cDNA syntheses. The expression of the candidate lncRNAs was evaluated by quantitative real-time PCR (qRT-PCR). The lncRNAs CAT1796 and CAT179 were both upregulated in prostate cancer compared to BPH clinical samples (P<0.05). ROC curve analysis showed that CAT1796 had high sensitivity and specificity for diagnosis of prostate cancer (AUC=0.8151[95%CI 0.65-0.97]), suggesting that CAT1796 lncRNA could be a prostate cancer biomarker.

Downloads

Download data is not yet available.

References

Keyghobadi N, Rafiemanesh H, Mohammadian-Hafshejani A, Enayatrad M, Salehiniya H. Epidemiology and trend of cancers in the province of Kerman: southeast of Iran. Asian Pac J Cancer Prev. 2015;16(4):1409-13. https://doi.org/10.7314/APJCP.2015.16.4.1409

Amoori N, Mirzaei M, Cheraghi M. Incidence of cancers in Kuzestan province of iran: trend from 2004 to 2008. Asian Pac J Cancer Prev. 2014;15(19):8345-9. https://doi.org/10.7314/APJCP.2014.15.19.8345

Pakzad R, Rafiemanesh H, Ghoncheh M, Sarmad A, Salehiniya H, Hosseini S, Sepehri Z, Afshari-Moghadam A. Prostate cancer in Iran: trends in incidence and morphological and epidemiological characteristics. Asian Pac J of Cancer Prev. 2016;17(2):839-43. https://doi.org/10.7314/APJCP.2016.17.2.839

Wu X, Xiao Y, Zhou Y, Zhou Z, Yan W. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death Dis. 2019;10(7):472. https://doi.org/10.1038/s41419-019-1699-6

Chen N, Rong M, Shao X, Zhang H, Liu S, Dong B,Xue W, Wang T, Li T, Pan J. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanom. 2017;12:5399. https://doi.org/10.2147/IJN.S137756

Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391-407. https://doi.org/10.1158/2159-8290.CD-11-0209

Amirmahani F, Ebrahimi N, Molaei F, Faghihkhorasani F, Jamshidi Goharrizi K, Mirtaghi SM, Borjian-Boroujeni M, Hamblin MR. Approaches for the integration of big data in translational medicine: single-cell and computational methods. Ann N Y Acad Sci. 2021;1493(1):3-28. https://doi.org/10.1111/nyas.14544

Lin X, Spindler TJ, de Souza Fonseca MA, Corona RI, Seo J-H, Dezem FS, Li L, Lee MJ, Long WH, Sellers TA, Karlan BY, Noushmehr H, Freedman M, Gayther SA, Lawrenson K. Super-Enhancer-Associated LncRNA UCA1 Interacts Directly with AMOT to Activate YAP Target Genes in Epithelial Ovarian Cancer. iScience. 2019;26;17:242-55. https://doi.org/10.1016/j.isci.2019.06.025

Ghanaat M, Goradel NH, Arashkia A, Ebrahimi N, Ghorghanlu S, Malekshahi ZV, Fattahi E, Negahdari B, Kaboosi H. Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer. Acta Pharmacol Sin. 2021. https://doi.org/10.1038/s41401-021-00616-5

Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136. https://doi.org/10.1038/nrg2904

Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, Cao X, Jing X, Wang X, Siddiqui J, Wei JT, Robinson D, Iyer HK, Palanisamy N, Maher CA, Chinnaiyan AM. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742. https://doi.org/10.1038/nbt.1914

Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10(1):38. https://doi.org/10.1186/1476-4598-10-38

Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non‐coding RNAs: regulators of disease. J Pathol. 2010;220(2):126-39. https://doi.org/10.1002/path.2638

Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716-21. https://doi.org/10.1073/pnas.0706729105

Ebrahimi N, Moeinifar N, Vallian S. rs1542705-67,992,843-1,050,239 represents a novel informative haplotype at the SMPD1 locus in the Iranian population. Meta Gene. 2020;25:100744. https://doi.org/10.1016/j.mgene.2020.100744

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette RT, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu Y, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199-208. https://doi.org/10.1038/ng.3192

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262

Hessels D, Verhaegh GW, Schalken JA, Witjes JA. Applicability of biomarkers in the early diagnosis of prostate cancer. Expert Rev Mol Diagn. 2004;4(4):513-26. https://doi.org/10.1586/14737159.4.4.513

Adhyam M, Gupta AK. A review on the clinical utility of PSA in cancer prostate. Indian J Surg Oncol. 2012;3(2):120-9. https://doi.org/10.1007/s13193-012-0142-6

Yang Z, Yu L, Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res. 2016;28(1):65.

Haese A, de la Taille A, Van Poppel H, Marberger M, Stenzl A, Mulders PF, Huland H, Abbou C, Remzi M, Tinzl M, Feyerabend S, Stillebroer AB, Gils MP, Schalken JA. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54(5):1081-8. https://doi.org/10.1016/j.eururo.2008.06.071

Gu P, Chen X, Xie R, Han J, Xie W, Wang B, Dong W, Chen C, Yang M, Jiang J, Chen Z, Huang J, Lin T. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol Ther. 2017;25(8):1959-73. https://doi.org/10.1016/j.ymthe.2017.04.016

Wu D-D, Chen X, Sun K-X, Wang L-L, Chen S, Zhao Y. Role of the lncRNA ABHD11-AS 1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol Cancer. 2017;16(1):138. https://doi.org/10.1186/s12943-017-0709-5

Li Z, Hou P, Fan D, Dong M, Ma M, Li H, Yao R, Li Y, Wang G, Geng P, Mihretab A, Liu D, Zhang Y, B Huang, Lu J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ. 2017;24(1):59. https://doi.org/10.1038/cdd.2016.95

Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, Tanaka H, Taniguchi H, Kawakami Y, Ueno M, Gotoh K, Ariizumi S, Wardell CP, Hayami S, Nakamura T, Aikata H, Arihiro K, Boroevich KA, Abe T, Nakano K, Maejima K, Sasaki-Oku A, Ohsawa A, Shibuya T, Nakamura H, Hama N, Hosoda F, Arai Y, Ohashi S, Urushidate T, Nagae G, Yamamoto S, Ueda H, Tatsuno K, Ojima H, Hiraoka N, Okusaka T, Kubo M, Marubashi S, Yamada T, Hirano S, Yamamoto M, Ohdan H, Shimada K, Ishikawa O, Yamaue H, Chayama K, Miyano S, Aburatani H, Shibata T, Nakagawa H. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48(5):500-9. https://doi.org/10.1038/ng.3547

Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433-45. https://doi.org/10.1101/gr.078378.108

Ebrahimi N, Akbari M, Ghanaatian M, Roozbahani moghaddam P, Adelian S, Borjian Boroujeni M, Yazdani E, Ahmadi A, Hamblin MR. Development of neoantigens: from identification in cancer cells to application in cancer vaccines. Expert Rev Vaccines. 2021;https://doi.org/10.1080/14760584.2021.1951246

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette RT, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu Y, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199-208. https://doi.org/10.1038/ng.3192

Chang Y-T, Lin T-P, Tang J-T, Campbell M, Luo Y-L, Lu S-Y, Yang C-P, Cheng T-Y, Chang C-H, Liu T-T, Lin C-H, Kung H-J, Pan C-C, Chang P-C. HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett. 2018;433:43-52. https://doi.org/10.1016/j.canlet.2018.06.029

Xu Y-H, Deng J-L, Wang G, Zhu Y-S. Long non-coding RNAs in prostate cancer: functional roles and clinical implications. Cancer Lett. 2019;464:37-55. https://doi.org/10.1016/j.canlet.2019.08.010

Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F, Wei M, Shen J, Hou J, Gao X, Xu C, Huang J, Zhao Y, Sun Y. Long Noncoding RNA MALAT-1 is a New Potential Therapeutic Target for Castration Resistant Prostate Cancer. J Urol. 2013;190(6):2278-87. https://doi.org/10.1016/j.juro.2013.07.001

Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013;20(7):908-13. https://doi.org/10.1038/nsmb.2591

Jiang H, Xiong W, Chen L, Lv Z, Yang C, Li Y. Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer. J Cell Biochem. 2019;120(6):8965-74. https://doi.org/10.1002/jcb.27851

Al Aameri RF, Sheth S, Alanisi EM, Borse V, Mukherjea D, Rybak LP, Ramkumar V. Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: Reversal by resveratrol. PLoS One. 2017;12(5):e0177198. https://doi.org/10.1371/journal.pone.0177198

Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766-75. https://doi.org/10.1111/febs.12902

Pickard M, Mourtada-Maarabouni M, Williams G. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta Mol Basis Dis. 2013;1832(10):1613-23. https://doi.org/10.1016/j.bbadis.2013.05.005

Misawa A, Takayama Ki, Inoue S. Long non‐coding RNAs and prostate cancer. Cancer Sci. 2017;108(11):2107-14. https://doi.org/10.1111/cas.13352

Goradel NH, Baker AT, Arashkia A, Ebrahimi N, Ghorghanlu S, Negahdari B. Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer. 2021;45(1):100639. https://doi.org/10.1016/j.currproblcancer.2020.100639

Zhang A, Zhao JC, Kim J, Fong K-w, Yang YA, Chakravarti D, Mo Y, Yu J. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 2015;13(1):209-21. https://doi.org/10.1016/j.celrep.2015.08.069

Hessels D, Schalken JA. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol. 2009;6(5):255. https://doi.org/10.1038/nrurol.2009.40

Downloads

Published

2021-10-12

How to Cite

1.
Ebrahimi N, Amirmahani F, Akbari M, Mosharaf Ghahfarokhi A, Hajihashemi B, Hamblin MR. Two long non-coding RNAs, CAT179 and CAT1796, differentiate between benign prostate hyperplasia and prostate cancer. Arch Biol Sci [Internet]. 2021Oct.12 [cited 2024Mar.29];73(3):399-406. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/6734

Issue

Section

Articles