Partial characterization, quantification and optimum activity of trypsin and lipase from the sciaenids Cynoscion othonopterus, Cynoscion parvipinnis and Cynoscion xanthulus

Authors

  • Mayra L. González-Félix Department of Scientific and Technological Research, University of Sonora, Edif. 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora http://orcid.org/0000-0003-1886-4096
  • Carolina De La Reé-Rodríguez Department of Scientific and Technological Research, University of Sonora, Edif. 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora http://orcid.org/0000-0001-5719-9266
  • Martin Perez-Velazquez Department of Scientific and Technological Research, University of Sonora, Edif. 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora http://orcid.org/0000-0002-9019-1220

Keywords:

Sciaenids, digestive enzymes, trypsin, lipase, partial characterization, optimum activity

Abstract

Paper description:

  • Trypsin and lipases play a role in the hydrolysis of protein and lipid constituting macronutrients in the diet of marine finfish. Basic knowledge of these enzymes is limited for some cultured fish species.
  • Molecular weights of trypsins and lipases and their pH and temperatures for optimum activity of three commercial sciaenids are presented.
  • The digestive tract of these sciaenids could become a valuable by-product because the enzymes have potential use as bioactive molecules for industrial applications.
  • Investigating pancreatic proteases and lipases of commercially important sciaenids contributes to the understand of their digestive physiology and aids in the formulation of aquafeeds.

 

Abstract: Trypsin and pancreatic lipase promote the digestion of proteins and lipids, respectively, when they are secreted into the anterior intestine; however, since the pancreas is a diffuse tissue in fish, the characterization and quantification of pancreatic enzymes is uncommon. The objective of this study was to partially characterize and compare the enzymatic activities of lipase and trypsin within the gastrointestinal tract of Cynoscion parvipinnis, Cynoscion othonopterus and Cynoscion xanthulus, to contribute to the knowledge of the digestive physiology of these important commercial sciaenids and to reveal whether they have potential for biotechnological applications. The presence of lipase and trypsin was confirmed by zymography and the molecular weights of both enzymes were determined by electrophoresis. For lipase, molecular weights of 65.8 and 69.5 kDa were determined for C. othonopterus and C. xanthulus, respectively. For C. parvipinnis, two lipases of 61.5 and 36.0 kDa were determined. In all three species the largest lipase activity was observed in the anterior intestine, followed by pyloric caeca, with optimum activity observed at pH 8.0 and at temperatures ranging between 40 and 45°C. Molecular weights of trypsin were 24.4, 23.6 and 23.7 kDa in C. othonopterus, C. parvipinnis, and C. xanthulus, respectively. The optimum pH of activity ranged between 7.0 and 9.0 and optimum temperature between 55 and 65°C for all species. These enzymes meet certain criteria that make them potential candidates for some industrial applications, such as the food industry and the production of detergents.

https://doi.org/10.2298/ABS191127002G

Received: November 27, 2019; Revised: December 23, 2019; Accepted: January 3, 2020; Published online: January 14, 2020

How to cite this article: González-Félix ML, De La Reé-Rodríguez C, Perez-Velazquez M.Partial characterization, quantification and optimum activity of trypsin and lipase from the sciaenids Cynoscion othonopterus, Cynoscion parvipinnis and Cynoscion xanthulus. Arch Biol Sci. 2020;72(1):81-93.

Downloads

Download data is not yet available.

References

Goodman B. Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ. 2010;34:44-53.

Nardini M, Dijkstra BW. α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struc Biol. 1999;9:732-7.

Smith LC, Faustinella F, Chan L. Lipases: three-dimensional structure and mechanism of action. Curr Opin Struc Biol. 1992;2:473-651.

Khangembam BK, Kameshwar-Sharma YVR, Chakrabarti R. Purification and characterization of trypsin from the digestive system of carp Catla catla (Hamilton). Int Aquat Res. 2010;4:1-12.

Cao MJ, Osatomi K, Sujuki M, Hara K, Tachibana K, Ishihara T. Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci. 2000;66:1172-9.

Lowe ME. Structure and function of pancreatic lipase and colipase. Annu Rev Nutr. 1997;17:141-58.

Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res. 2007;43:2007-16.

Van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F. Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta. 1999;1441:173-84.

Terzyan S, Wang CS, Downs D, Hunter B, Zhang X. Crystal structure of the catalytic domain of human bile salt activated lipase. Protein Sci. 2000;9:1783-90.

Kurtovic I, Marshall SN, Zhao X, Simpson BK. Lipases from mammals and fishes. Rev Fish Sci. 2009;17:18-40.

Léger C. Digestion, absorption and transport of lipids. In: Cowey CB, Mackie AM, Bell JG, editors. Nutrition and feeding of fish. London: Academic Press; 1985. p. 299-331.

Gjellesvik DR, Lombardo D, Walther BT. Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta. 1992;1124:123-34.

Gjellesvik DR, Lorens JB,Male R. Pancreatic carboxylester lipase from Atlantic Salmon (Salmo salar) cDNA sequence and computer-assisted modelling of tertiary structure. Eur J Biochem. 1994;226:603-12.

Iijima N, Tanaka S, Ota Y. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream (Pagrus major). Fish Physiol Biochem. 1998;18:59-69.

Kurtovic I, Marshall SN, Zhao X. Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and zeland hoki (Macruronus novaezelandiae). Fish Physiol Biochem. 2010;36:1041-60.

Nolasco H, Moyano-López F, Vega-Villasante F. Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem. 2011;37:43-52.

Holmes RS, Cox LA. Bioinformatics and evolution of vertebrate pancreatic lipase and related proteins and genes. J Data Min Genom Proteomics. 2012;3:1-10.

Rueda-López S, Martínez-Montaño E, Viana MT. Biochemical characterization and comparison of pancreatic lipases from the Pacific bluefin tuna, Thunnus orientalis; totoaba, Totoaba macdonaldi; and striped bass, Morone saxatilis. J World Aquacult Soc. 2017;48:156-65.

González-Félix ML, Santana-Bejarano EB, Perez-Velazquez M, Villalba-Villalba AG. Partial characterization, quantification and activity of pancreatic lipase in the gastrointestinal tract of Totoaba macdonaldi. Arch Biol Sci. 2018a;70:489-96.

González-Félix ML, Gatlin III DM, Perez-Velazquez M, Webb K, García-Ortega A, Hume M. Red drum Sciaenops ocellatus growth and expression of bile salt-dependent lipase in response to increasing dietary lipid supplementation. Fish Physiol Biochem. 2018b;44:1319-31.

Shahidi F, Vidanarachchi J. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol. 2001;12:435-64.

Gupta R, Beg QK, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 2002;59:15-32.

Klomklao S. Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci Technol. 2008;30:37-46.

Bougatef A. Trypsins from fish processing waste: characteristics and biotechnological applications: Comprehensive review. J Clean Prod. 2013;57:257-65.

Mendivil-Mendoza JE, Aragón-Noriega EA, Arreola-Lizárraga JA, Rodríguez-Domínguez G, Castillo-Vargasmachuca SG, Ortega-Lizárraga GG. Indicadores de sustentabilidad para la pesquería de curvina golfina Cynoscion othonopterus en el Alto Golfo de California. Rev Biol Mar Oceanog. 2018;531:119-30.

Perez-Velazquez M, Urquidez-Bejarano P, González-Félix ML, Minjarez-Osorio C. Evidence of euryhalinity of the Gulf corvina (Cynoscion othonopterus). Physiol Res. 2014;63:659-66.

González-Félix ML, Minjarez-Osorio C, Perez-Velazquez M, Urquidez-Bejarano P. Influence of dietary lipid on growth performance and body composition of the Gulf corvina, Cynoscion othonopterus. Aquaculture. 2015;448:401-9.

Minjarez-Osorio C, Castillo-Alvarado S, Gatlin DM III, González-Félix ML, Perez-Velazquez M, Rossi Jr. W. Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): A comparative study. Aquaculture. 2016;453:122-9.

Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH. FAO identification guide for fishery purposes. Pacífico Centro-Oriental. Vol 3, Vertebrates. In: Chao NL, editor. Sciaenidae, Rome, Italy: FAO; 1995. p. 1427-518.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5.

García-Carreño FL, Dimes LE, Haard NF. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem. 1993;214:65-9.

Yadav RP, Saxena RK, Gupta R, Davidson WS. Rapid zymogram for lipase. BioTechniques. 1998;24:754-6.

Versaw WK, Cupett SL, Winters DD, Williams LE. An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci. 1989;54:1557-8.

Erlanger B, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961;95:271-8.

González-Félix ML, Pérez-Velázquez M, Cañedo-Orihuela H. The effects of environmental salinity on the growth and physiology of totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis. J Fish Biol. 2017;91:510-27.

Castillo S, Halligan S, Gatlin DM III. Growth responses of juvenile red drum Sciaenops ocellatus to dietary phenylalanine and tyrosine can be used to calculate the total aromatic amino acid requirement. J Nutr. 2015;145:2341-6.

Kameshwar-Sharma YVR, Boora N, Tyagi P. Isolation, purifcation and characterization of secondary structure and kinetic study of lipase from Indian major carp, Catla catla (Catla). Enz Eng. 2014;3:1-8.

Görgün S, Akpinar MA. Purification and characterization of lipase from the liver of carp, Cyprinus carpio L. (1758), living in Lake Tödürge (Sivas, Türkiye). Turk J Fish Aquat Sci. 2012;12:207-15.

Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H. Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol. 2006;144:47-56.

Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem. 2007;100:1580-9.

Jellouli K, Bougatef A, Daassi D, Balti R, Barkia A, Nasri M. New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: Purification and characterization. Food Chem. 2009;116:644-50.

Deguara S, Jauncey K, Agius C. Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J Fish Biol. 2003;62:1033-43.

Matus de la Parra A, Rosas A, Lazo JP, Viana MT. Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem. 2007;33:223-31.

Borlongan IG. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture. 1990;89:315-325.

Rust MB. Nutritional physiology. In: Halver JE and Hardy R, editors. Fish nutrition. 3rd ed. San Diego, CA, USA: Academic Press; 2002. p. 367-452.

Klomklao S, Benjakul S. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: Purification and physicochemical and biochemical. Int J Biol Macromol. 2018;107:1864-70.

National Institute of Fisheries and Aquaculture (INAPESCA). Temperatura superficial marina del Pacífico Mexicano. [last updated 2018 Feb 02; cited 2018 Aug 04]. Available from: https://www.gob.mx/cms/uploads/attachment/file/325216/Temperatura_superficial_marina_del_Pac_fico_Mexicano10nov17_02_feb_18.pdf

Rodwell VW, Kenelly PJ. Enzyme kinetics. In: Murray RK, Granner DK, Mayes PA, Rodwell VW, editors. Harper’s Biochemistry. 26th ed. New York, USA: McGraw-Hill; 2003. p. 60-71.

Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol B. 2005;140:91-8.

Nasri R, Sila A, Ktari N, Lassoued I, Bougatef A, Karra-Chaabouni M, Nasri M. Calcium dependent, alkaline detergent-stable trypsin from the viscera of goby (Zosterisessor ophiocephalus): purification and characterization. Process Biochem. 2012;47:1957-64.

Klomklao S, Benjakul S, Kishimura H, Chaijan M. 24 kDa Trypsin: a predominant protease purified from the viscera of hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem. 2011;129:739-46.

Marcuschi M., Esposito TS, Machado MFM, Hirata I, Silva MV. Purification, characterization and substrate specificity of a trypsin from the Amazonian fish tambaqui (Colossoma macropomum). Biochem Biophys Res Commun. 2010;396:667-73.

Silva JF, Espósito TS, Marcuschi M, Ribeiro K, Cavalli RO, Oliveira V, Bezerra RS. Purification and partial characterization of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem. 2011;129:777-82.

Langeland M, Lindberg JE, Lundh T. Digestive enzyme activity in Eurasian perch (Perca fluviatilis) and Arctic charr (Salvelinus alpinus). J Aquac Res Development. 2013;5:1-8.

Torrissen KR. Characterization of proteases in the digestive tract of Atlantic salmon (Salmo salar) in comparison with rainbow trout (Salmo gairdneri). Comp Biochem Physiol B: Comp Biochem. 1984;77:669-74.

Einarsson S, Davies PS, Talbot C. The effect of feeding on the secretion of pepsin, trypsin and chymotrypsin in the Atlantic salmon, Salmo Salar L. Fish Physiol Biochem. 1996;15:439-46.

Klomklao S, Kishimura H, Nonami Y, Benjakul S. Biochemical properties of two isoforms of trypsin purified from the intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 2009;115:155-62.

Bougatef A, Souissi N, Fakhfakh N, Ellouz-Triki Y, Nasri M. Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 2007;102:343-50.

Guizani N, Rolle RS, Marshall MR, Wei CI. Isolation, purification and characterization of a trypsin from the pyloric ceca of mullet (Mugil cephalus). Comp Biochem Physiol. 1991;98:517-21.

Concha-Frías B, Álvarez-González CA, Gaxiola-Cortes MG, Silva-Arancibia AE, Toledo-Agüero PH, Martínez-García R. Partial characterization of digestive proteases in the common snook Centropomus undecimalis. Int J Biol. 2016;8:1-11.

Guerrero-Zárate R, Álvarez-González CA, Olvera-Novoa MA, Perales-García N, Frías-Quintana CA, Martínez-García R, Contreras-Sánchez WM. Partial characterization of digestive proteases in tropical gar Atractosteus tropicus juveniles. Fish Physiol Biochem. 2014;40:1021-9.

García-Carreño FL, Albuquerque-Cavalcanti C, Navarrete del Toro MA, Zaniboni-Filho E. Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): Characteristics and effects of protein quality. Comp Biochem Physiol. 2002;132:343-52.

Essed Z, Fernández I, Alarcón FJ, Moyano FJ. Caracterización de la actividad de proteasa digestiva de atún rojo Thunnus thynnus (Linnaeus, 1758). Boletín. Instituto Español de Oceanografía. 2002;18:99-107.

Fuchise T, Kishimura H, Sekisaki H, Nonami Y, Kanno G, Klomklao S, Benjakul S, Chun B. Purification and characteristics of cold-zone fish trypsin. Food Chem. 2009;116:611-6.

Villalba-Villalba AG, Ramírez-Suárez JC, Valenzuela-Soto EM, Sánchez GG, Ruiz GC, Pacheco-Aguilar R. Trypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991: its purification and characterization. Food Chem. 2013;141:940-5.

Khangembam BK, Chakrabarti R. Trypsin from the digestive system of carp Cirrhinus mrigala: purification, characterization and its potential application. Food Chem. 2015;175:386-94.

Klomklao S, Benjakul S, Visessanguan W, Simpson BK, Kishimura H. Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochem. 2005;40:3061-7.

Klomklao S, Benjakul S, Kishimura H. Proteinases in hybrid catfish viscera: Characterization and effect of extraction media. J Food Biochem. 2010;34:711-29.

De Vecchi S., Coppes Z. Marine fish digestive proteases - relevance to food industry and the south-west Atlantic region- a review. J Food Biochem. 1996;20:193-214.

Freitas-Júnior ACV, Costa HMS, Icimoto MY, Hirata IY, Marcondes M, Carvalho LB Jr, Oliveira V, Bezerra RS. Giant Amazonian fish pirarucu (Arapaima gigas): Its viscera as a source of thermostable trypsin. Food Chem. 2012;133:1596-602.

Downloads

Published

2020-03-24

How to Cite

1.
González-Félix ML, De La Reé-Rodríguez C, Perez-Velazquez M. Partial characterization, quantification and optimum activity of trypsin and lipase from the sciaenids Cynoscion othonopterus, Cynoscion parvipinnis and Cynoscion xanthulus. Arch Biol Sci [Internet]. 2020Mar.24 [cited 2022Jul.6];72(1):81-93. Available from: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/4846

Issue

Section

Articles